
www.manaraa.com

Model Checking for Data-Based Concurrent Systems

A D isse r t a t io n P r e s e n t e d

b y

D e z h u a n g Z h a n g

t o

T h e G r a d u a t e S c h o o l

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

S t o n y B r o o k U n iv e r s it y

December 2005

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

UMI Number: 3206503

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3206503

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

St ate University of New York

at Stony Brook

The Graduate School

Dezhuang Zhang

We, the dissertation committee for the above candidate for

the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor Ranee W. CleCleaveland, Advisor
Computer Science Department

..
Professor C. R. Ramakrishnan, Chairman of Defense

Computer Science Department

Professor Scott Stoller
Computer Science Department
r\ X)

hProfessor Oleg S^kolsky
Department of Computer arya Information Science

University of Pennsylvania

This dissertation is accepted by the Graduate School.

Graduate School

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

Abstract of Dissertation

M odel Checking for Data-Based Concurrent Systems

by
Dezhuang Zhang

Doctor o f Philosophy

in

Computer Science

Stony Brook University

2005

This dissertation introduces predicate equation systems (PESs) as a uni

form symbolic basis for model checking of data-based concurrent systems. In

contrast with the finite-state concurrent systems that most model-checking

research is directed toward, data-based concurrent systems use data variables

that may draw values from infinite sets. PESs generalize first-order logic by

adding capabilities for recursively-defined predicates, and may be seen as a

first-order generalization of the well-studied boolean equation systems used in

finite-state model checking.

The dissertation also introduces a goal-directed, Gentzen-like proof system

for proving PES formulas and shows how it may be used to define on-the-fly

model checkers for data-based model-checking problems. Then the theory is

used to develop model checkers for different data-based model-checking prob

lems: real-time model checking, in both traditional and parametric forms;

model-checking for Presburger systems, which feature the use of integer vari

ables; and temporal-logic query checking for Presburger systems. In each case,

implementations are presented, and extensive experimental data collected to

compare these algorithms with existing approaches, when such exist. The gen

eral proof-search approach given here generally outperforms, in often startling

fashion, the specialized routines found in the literature for these problems.

iii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

To my wife Yue and our son Matthew with love

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

Contents

Acknowledgements ix

1 Introduction 1

1.1 Predicate Equation S y s tem s... 2

1.2 The First-Order Modal M u-C alculus.. 4

1.3 Real-Time Model Checking P roblem s.. 4

1.4 Temporal-logic Query C hecking... 7

2 Fixpoint Equation Systems 10

2.1 Lattices and F ix p o in ts ... 10

2.2 Fixpoint Equation Systems.. 12

2.3 Boolean Equation System s.. 14

3 Predicate Equation Systems 16

3.1 Basic Data Theories .. 16

3.2 The Predicate Calculus... 18

3.3 Predicate Equation S y stem s.. 19

3.4 Global Approaches to Tautology C heck ing................................ 21

3.5 A Gentzen-Like Proof S y s te m .. 22

4 Transition System s and the Modal Mu-Calculus 28

4.1 Concrete Transition System s.. 28

v

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

4.2 The First-Order Modal M u-C alculus....................................... 29

4.3 Symbolic Transition G ra p h s ... 32

4.4 From Model Checking to PESs 34

4.5 Finite-State Model Checking with PESs 38

5 Real-Time M odel Checking with PESs 40

5.1 Parametric Timed A utom ata... 40

5.2 The Real-Time Modal M u-Calculus... 43

5.3 From Real-Time Model Checking to P E S s 45

5.4 On-the-Fly Real-Time Model Checking.................................... 48

5.5 Im plem entation... 56

5.6 Experimental Results for Real-Time................................ 65

5.7 Experimental Results for Parametric R eal-T im e............ 72

6 M odel Checking Presburger System s with PESs 78

6.1 Presburger System s... 78

6.2 The Presburger Modal Mu-Calculus... 80

6.3 From Presburger Model Checking to P E S s 82

6.4 Local Model Checking ... 83

6.5 Implementation and Performance Evaluation........................... 85

7 Temporal-Logic Query Checking for Presburger System s 86

7.1 A Simple E x a m p le ... 87

7.2 Existential Query Checking .. 88

7.3 Universal Query C heck ing ... 91

7.4 Im plem entation... 92

7.5 Case Study : A Simple T h erm o sta t... 95

7.6 Performance C om parisons... 98

8 Conclusion and Future Work 103

vi

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

List of Figures

1 A Presburger s y s te m ... 8

2 A Gentzen-like proof system for PESs.. 24

3 A simple symbolic transition g r a p h .. 34

4 Translation function for P E S s ... 36

5 The relationship between the two semantic fu n c tio n s 37

6 A parametric timed automaton with two c lo c k s 42

7 Clock re g io n s .. 47

8 The graphic representation of pret(<p) and suct(<f>)..................... 49

9 A local approach for parametric real-time model checking. . . 50

10 Example for rule V .. 51

11 Example for rule 3 ! .. 52

12 Examples for lemma 5.4.1 .. 53

13 Representation of a clock z o n e .. 58

14 Example for CRD with upper bounds... 61

15 A local approach for Presburger systems...................................... 83

16 A simple transition graph .. 87

17 Automaton for x — y < 0 ... 94

18 SCR specification of a simple th e rm o sta t................................... 96

vii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

List of Tables

1 Pseudo-code for local real-time model-checking algorithm . . . 63

2 Pseudo-code for local real-time model-checking algorithm (cont) 64

3 Non-parametric real-time performance data when correct sys

tems fail buggy (b) properties.. 68

4 Non-parametric real-time performance data for buggy system

specifications and correct (a) properties....................................... 69

5 Non-parametric real-time performance data for correct systems

and (a) properties.. 70

6 Parametric real-time performance data with (a) conditions. . . 75

7 Parametric real-time performance data with (c) conditions. . . 76

8 Parametric real-time performance data with (b) conditions. . . 77

9 Query checking performance comparison with model checking. 99

10 Query checking performance comparison with ALV-0.3.............. 101

11 Query checking performance comparison with ALV-0.3 for

buggy properties.. 102

viii

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Acknowledgements

First of all, I want to thank my great mentor, Prof. Ranee Cleaveland, for his

support during my doctoral research. You give me enough freedom, wisdom

and offer me valuable guidance to explore the research subject. The days we

spend over the corner of the large dining table with “pencil and paper” in your

friendly and spacious house, is one of the happiest days that I have ever had.

I have enjoyed our meeting and learned a lot from the rigorous way you think,

the encouraging way you speak and the elegant way you write. Not enough

thanks can be given to you!

I also want to thank Prof. Eugene W. Stark, Prof. C. R. Ramakrishnan,

Prof. Scott A. Smolka, Prof. Scott Stoller, Prof. Oleg Sokolsky and Prof.

Tevfik Bultan for their (funding) help.

I would like to thank Edwina Osmanski for her enthusiastic service.

My thanks also go to my friends in Stony Brook : Fuxiang Yu, Haodong

Hu, Dongdong Ge, Ping Yang, Bikram Sengupta and many others. I enjoyed

the discussion with Fuxiang about math problems. The computing resource

contributed by Haodong helped me to provide experimental results in time.

Special thanks to my wife Yue Gao. Without your consistent love, support,

understanding, encouragement and patience, I would not have been able to

complete this program. I especially want to thank my parents-in-law and my

parents. Without their expectation and encouragement, I would have never

been here to present this dissertation.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Chapter 1

Introduction

Temporal-logic model checkers [36, 38, 87] automatically establish whether or

not a system satisfies a specification given as a formula in temporal logic. The

model-checking problem has been studied most intensively in the area of finite-

state systems but also for classes of real-time systems and systems involving

integer-valued variables. (Of course, for arbitrary systems involving integers,

model checking is not decidable.) A number of different temporal logics have

also been studied, including LTL [74], CTL [37], CTL* [52] and the modal

mu-calculus [72].

An interesting insight to emerge in the area of finite-state model check

ing is that model-checking questions can be reduced to solving systems of

propositional equations [11, 43] called boolean equation systems. This obser

vation leads to a uniform framework for understanding a number of different

model-checking techniques, including so-called symbolic approaches [33]. It has

also served as a basis for new algorithms, including efficient on-the-fly model-

checkers for the mu-calculus [11] and symbolic algorithms based on Gaussian

elimination [78], and algorithm optimizations, e.g. [23, 43, 58, 77, 102] etc.

The motivation of this dissertation is to develop a similar framework for

1

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

model checking of systems that manipulate values and thus may not be finite-

state. The main results obtained are described below.

1.1 P red icate Equation System s

This dissertation develops predicate equation systems (PESs) as a uniform ba

sis for verifying data-based systems [111]. PESs generalize boolean equation

systems to full first-order logic and may be seen as an extension of the pred

icate calculus with recursively-defined predicates. We show how PESs may

be used to encode model-checking problems, including those for Presburger

systems [32] and real-time model checking [64], may be cast in terms of PESs,

and discuss generic model-checking techniques that immediately follow from

the recursive form of PESs.

We also define a goal-directed, Gentzen-like proof system for establishing

that formulas defined in the context of a PES are valid (i.e. are tautologies).

This proof system is shown to provide a generic basis for on-the-fly model

checking of data-based systems.

R elated W ork A number of model checking frameworks have been pro

posed for (infinite-state) data-based systems. These various approaches can

be characterized along several axes.

Boolean equation systems (BESs) have received a lot of attention since the

model checking algorithms with CTL [37] and with modal mu-calculus [53]

were introduced. A number of finite-state model-checking algorithms were

developed directly over BESs, including [11, 24, 40, 43, 76, 78, 82, 100]. The

first-order boolean equation systems [57, 59] is used for model-checking infinite-

state value-passing systems. Predicate equation systems provide a more gen

eral framework in the sense to encode real-time model checking, and we focus

on algorithmic issues and are devoted to develop new applications, e.g. query

2

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

checking.

Logic programming has been used to solve model-checking problems e.g.

see [88, 89] etc. A logic program is a sequence of clauses, called Horn clauses,

each of which has the form A <— B\ A . . . A Bn where are atomic

formulas. A constraint logic program (CLP) [67, 68] is a first order extension

of logic program. A constraint is a finite conjunction of atomic formulas built

on a given set of constraint constructors. Constraints will be interpreted over

a fixed domain and handled via a constraint solver. The least model of a CLP

program can be defined as the least fixpoint of an operator that computes

the direct logical consequences of the program and of a given set of atomic

formulas. Several papers [48, 51, 55] have demonstrated the potentiality of

CLP as a symbolic model checker for infinite-state systems. Both PESs and

CLPs provide the capability for fixpoint computations. CLPs use resolution

based method while PESs allows us to algebraically reason the model checking

problem.

Local model checking tries to avoid constructing the global state space of

the system, and access as few states as possible and only build fragments of

the state space as needed. Algorithms in this category include tableau-based

model-checking procedures for infinite-state systems [12, 69], value-passing

systems [90], deductive model checking (see e.g. [26, 79, 95]) and attempts

to combine theorem prover and model checking (see e.g. [22, 84]). These

works consider the general termination condition for fixpoint computations

and provides relative completeness. We have also provided a novel Gentzen-

like proof system for PESs which could be customized for different applications.

3

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

1.2 T he First-O rder M odal M u-C alculus

This thesis also develops a first-order generalization of the modal mu-

calculus [72] and presents general strategies for translating model-checking

problems for this logic into PESs. It is also shown how existing temporal log

ics for data-based systems, including the real-time modal mu-calculus [96] and

Presburger CTL [32], may be translated into this logic.

1.3 R eal-T im e M odel Checking Problem s

Real-time model checking [2, 7, 64] has received a lot of attention in the past

15 years. In the traditional formulation of the problem, one is given a real

time system modeled as a timed automaton and a specification as a formula in

temporal logic and required to determine whether or not the system satisfies

the formula.

In practice, system models often contain parameters that can be adjusted

to time model behavior. In automotive and aerospace applications, these

parameters are often referred to as calibration parameters. For example, in

an automobile-engine controller one calibration parameter might describe the

number of cylinders in the engine, while another might be the maximum al

lowed revolutions-per-minute the engine can undergo. Setting these param

eters to different values allows the same model to be “deployed” for differ

ent engine models. These calibration parameters are also usually equipped

with constraints on their allowed values; the number of cylinders might be

restricted to 4, 6 or 8, for example, while the maximum RPM setting might

be constrained to fall in the interval [7000,8000]. Model checking such a pa

rameterized system would require checking model correctness for all parameter

settings against a temporal formula that may also involve the same parameters.

4

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

We show how the general framework PESs may be used for both non-

parametric real-time model checking and checking a parameterized model

against a parameterized formula. We call the latter problem the universal

parametric real-time model-checking problem [112] because, in contrast with

other work on parametric real-time systems, our interest consists in deter

mining whether or not every parameter setting consistent with parameter

constraints leads to correct behavior. A naive approach to the universality

problem is to test each parameter assignment. For each parameter valuation,

one needs to perform the model-checking algorithm once. Such a computation

might be prohibitive, since the number of possible parameter valuations may

be very large. We present a local parametric model-checking algorithm for

solving such a general problem symbolically, which only needs one execution

of the model-checking process.

R elated W ork Several parametric real-time analysis problems have been

investigated. The emptiness problem is the following: given a parameterized

real-time system having parametric bounds on delays, and a state in the real

time system, is there an assignment of values to the parameters such that the

the desired state can be reached? This problem is known to be undecidable

in general [9], although for dense time systems with single parametric clock,

decision procedures exist. The constraint synthesis problem is related to our

universality problem: given a parametric real-time system and formula, derive

the most-general constraints over parameters that make the model-checking

problem successful. This problem is studied in [5, 13, 16, 30, 31, 54, 66, 103,

104, 106]. Although the constraint-synthesis problem for timed CTL with

parameters appearing only in formulas is decidable, the same does not hold

for timed automaton with parameters in general. For example, [31] showed

that the model checking of parametric timed CTL is undecidable over timed

automata with only one parametric clock. The optimization problem, i.e.

5

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

find the optimal valuations of parameters according to some given criteria, is

considered in [5, 107) etc.

All of these problems differ from the one considered here in that no a priori

constraints on parameters are considered as given. In our experience with a

variety of automotive and aerospace companies, however, such constraints are

always given, and indeed are often specified even before the parametric model

is constructed. The current work is intended to initiate study into this problem

and offer a solution in certain practically relevant cases.

Our local parametric real-time model-checking algorithm encodes the

model-checking problem with PESs. The solving of PESs is performed by

providing a valid proof (i.e. successful tableau) for an initial predicate. In

contrast with other real-time model-checking techniques, which employ either

“forward” or “backward” analysis techniques, our proof search technique works

in a forward / backward style. Proofs are constructed in a goal-directed, “for

ward” manner, with information obtained in one branch of proof construction

allowed to flow “backward” to improve proof construction in other branches.

The forward component of our strategy supports early termination in case

errors are detected, while the backward element enables efficient computation

when no errors are present. Experimental data shows that our algorithm sig

nificantly outperforms other existing tools to detect errors while having com

parable performance when there are no errors. Since the universal problem

can be seen as the dual of the emptiness problem, it is impossible to provide an

algorithm which could terminate with more than two parametric clocks (even

the decidability of the case with two clocks is open). However, our solution

procedure does terminate when parameter constraints take the form of finite

sets: a restriction we impose in this dissertation.

Among existing real-time model-checking works, the algorithms of [96, 97]

are most related to ours in the sense that theirs also works in a forward /

6

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

backward way to refine regions. Our method is somewhat different in being

based on proof search; this basis permitted us to identify situations, specifically

in the checking of invariance properties, in which we can avoid clock-zone-

splitting operations that their algorithm required. Consequently, we conjecture

that our algorithm will significantly outperform those, although the absence of

publicly available implementations of these tools prevented us from assessing

this empirically.

1.4 Tem poral-logic Query Checking

Temporal-logic query checking [34] has emerged as a useful extension to model

checking for supporting requirements and design understanding. The query-

checking problem may be formulated as follows: given a model and a temporal

logic formula with placeholders (i.e. a query), compute a set of assignments of

formulas to placeholders such that the resulting temporal formula is satisfied

by the given model. For example, solving the CTL query AG ?x , where l x

is a placeholder, for the strongest formula making the query true yields the

invariant (2 < x < 5) A (3 < y < 8) for the Presburger system in Figure 1. In

the figure, the system is given as a state machine that can modify and test the

values of integer variables x, y. Each transition includes a conditional guard

determining whether or not the transition may fire; and and an optional

update action to be performed when the transition fires. The “start state”

arrow also contains the initial conditions on the values of x, y; here, x = 2 and

y = 3 when the system begins execution.

Temporal-logic query checking has proved valuable as a means for model

understanding. For example, given an early attempt at a specification for a

system, one would want to validate some desired temporal-logic properties

with a model checker. Some of the properties might fail to hold, in which

7

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

x < 5; x4- + x > 2; x ----

x = 2
y = 3

y < 8; y-P + y > 3; y ----

Figure 1: A Presburger system

case one might infer either that the specification requires revision or that the

properties are faulty. To determine which situation holds, one can modify

formulas into queries in order to retrieve the strongest formulas that makes

the query true, and obtain more diagnostic information to help improve the

design. Even if a property is proved to hold in the model, one can still use a

query checking to obtain much stronger properties and thus understand more

precisely the behavior of the system.

We develop query-checking techniques for a class of system models that use

integer-valued variables (so-called Presburger systems, in which Presburger

formulas are used to define system behavior) [110]. Our method uses the

symbolic model-checking technique that relies on proof search. Solutions to a

placeholder are inferred at the leaves of a proof tree in order to ensure that

the resulting proof is valid.

The principal contributions of our query-checker, which we call CWB-QC

(Concurrency Workbench [41] - Query Checking), are the following.

(1) CWB-QC is the first query checker for the class of (infinite-state) Pres

burger systems. Existing query checkers [61] only deal with finite-state

systems. With CWB-QC, formulas and systems can manipulate integer

valued variables and may thus be infinite-state.

8

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

(2) Our solution focuses on the existential (“find a solution”) query-checking

problem, as opposed to the universal one (“find all solutions”). The

latter problem is the usual one studied, but its double exponential time

complexity limits its application [29, 61]. However, the applications of

query checking that are most often cited [61], existential query checkers

can equally well be used, and at much lower computational cost.

(3) Our existential query checker runs as fast as our model checker, and

faster with more precise results than the Action Language Verifier [17],

the state-of-the-art model checker for Presburger systems.

R elated W ork As originally proposed by Chan [34], query checking concen

trated on valid queries, i.e. queries that always have a unique strongest solution

for every system. Recent work has extended this seminal research in several

ways. Bruns and Godefroid [29] studied how to adapt the automata-theoretic

model-checking approach to solve the query-checking problem. Gurfinkel et

al. [61] enriched the query language with multiple placeholders and imple

mented query checking using a multi-valued model checker. The problem of

deciding whether a given query has a unique strongest solution over a given

system and how to compute this solution is studied in [65]. The valid-query

problem is revisited by [92]. All these works focus on propositional temporal

logic and finite-state systems.

9

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

Chapter 2

Fixpoint Equation Systems

This chapter introduces a general account of fixpoint equation systems [100]

over complete lattices.

2.1 L attices and F ixpoints

Let Q be a set and CC Q x Q be partial order on Q, where a partial order is

a reflexive, antisymmetric and transitive relation. Then (Q, C) is a lattice if

every pair of elements p, q 6 Q has a greatest lower bound p (1 q e Q and a

least upper bound p U q e Q. If for every subset S C Q , there exists a least

upper bound US' and a greatest lower bound nS, (Q, C) is called complete

lattice. Note that every complete lattice has a maximum element T = U0 and

minimum element _L = n0, and that every finite lattice is complete.

A function (j> : Q —► Q is called monotone if whenever q C q' then (f>(q) C

It is continuous if for every subset S e Q, <f>(\JS) = U</>(S). An element

q € Q is a fixpoint of <f> if <f)(q) = q.

Let (Q , Q be a complete lattice, according to Knaster-Tarski Fixpoint

Theorem [101], every monotonic function <f> 6 QQ has a unique least fixpoint

p4> E Q and greatest fixpoint u<p 6 Q defined by,

10

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

= n{<7 e Q | 0 (g) c 9}
1/0 = Ll{g G Q I q C 0 (g)}

The greatest and least points of a continuous function 0 over a complete

lattice may be characterized as an infinite conjunction and disjunction of ap-

proximants respectively,

1/0 = n “ o0i

H<t> = U-Q0,

where,

0o = T

4>i+1 = 0 (0 i)

00 = -L

0 i+ l = 0 (0 i)

Let (Q, Q be a complete lattice and X be a finite set of variables. The set

Qx consists of all functions mapping X to Q. We call a function 9 g Qx as an

environment over X. Then Qx represent the set of all environments over X.

Environments constitute a complete lattice under the pointwise extension of

C to Qx: 6 C ff if and only if for all X G X, 9(X) C 0'(X).

We assume that if 6 G Qx and 6 G Qr then X = X', and we write dom(0) =

X for the domain of 9. We sometimes write Qx as X —► Q. If 9 G Qx and

9' G Q'x , then 9[ff] represents the fimction in (Q U Q/) (XuX’ ̂ defined as follows.

(0 [0 ']) (x) =

ff{x) if x G X'

9(x) otherw ise

11

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Also, if 9 € Qx and X' C X, then 9\X' denotes the function in Q3̂ defined by

(0[X')(x) = 6(x) if x e X'. Finally, if X = {xi , . . . ,i„} and {gi, ...,<?„} C Q

then (xi : = q i , . . . ,x n := qn) represents the function that maps each x, to q{.

2.2 F ixpoin t E quation System s

Syntax An equation block B is a set of equations {X i = . . . , X t = /;},

where fi are monotonic fimctions with type Qx —> Q. Variables A, e X and

are distinct. We use Ihs(B) to denote the left-hand side variables in block B,

and rhs(Af) to refer to the right-hand side of the equation whose left-hand side

variable is X x. Function vars(/<) denotes the set of free variables in fi. We

define vars(fi) = lhs(£?) U (J*=1 vars(/,) as the variables in equation block B

and refer to variables in Ihs(B) as bound and variables in vars(B) — Ihs(B) as

free.

A parity block E has the form (p, B), where p E {p, v} is a parity indicator

and B is an equation block. We lift the notions Ihs, rhs, vars, free variable and

boimd variable to parity block in the straightforward manner.

A fixpoint equation system is a nonempty sequence E = E \ . . . Em of parity

blocks whose left-hand sides are pairwise disjoint. If E' is an equation system

and E is a parity block whose left-hand side variables are disjoint from those

in E' then we write E :: E' for the equation system obtained by adding E to

front of E'. We use Efc = EkE^+i. . . to refer to the subsequence of E starting

from the A:-th parity block. Operations Ihs, rhs, vars, free variable and bound

variable are generalized in the straightforward manner. We call E as closed if

every X € vars(E) is bound, i.e. an element of Ihs(E).

Sem antics We first consider the semantics of the p-blocks B = {Ai =

f i , . . . , X i = /(}. Let X' = {Xi , . . . ,Aj} and 6 E Qx. Define a function

Jb ,0 ■ Qr —> Qr mapping environments over X' to environments over X' as

12

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

follows.

f Bfi{ff) = (X ! := h { 9\e' 1), • • • , * , : = M O W))) (1)

Intuitively, /s,e(0/) returns an environment over X' in which each is mapped

to the result returned by evaluating on environment 8{8'\. Note that we use

d[8'\ to denote the environments updated by O'. It follows from the monotonic

ity of the f j that for any 6, f Be is a monotonic function over Qx'. Tarski’s

fixpoint theorem then ensures the existence of least and greatest fixpoints,

h /b ,9 and which are environments over X'. Given 8 e Qx, we define the

semantics of a parity block in terms of these fixed points: |(p, B)\8 = p fB,o- So

[(p, B)j maps environments over X to environments over X', where X' consists

of the left-hand side variables in B.

For the semantics of an fixpoint equational system E, given an environment

8, we define a function fog : Qx —► Qx inductively on the structure of E and

the above block semantic fimction f Btg. When E contains a single parity block,

we take fo tg = f B<0 and define [EJ0 = [(p, B)\8. When E contains more than

one blocks, it may be written as E = (p, B) :: E', where E' is also an equational

system. In this case fo,g is defined as

t o w = (2)
where XB = Ihs(B). Intuitively, this function may be imderstood by inspect

ing its subexpressions. [E'](0[0']) is the environment over Xe' defined by E'

in environment 8 updated with bindings contained in 8'. This environment

assigns a “fixpoint value” to every left-hand variable in E'. /b ,9[[e'] (»[«'])] is the

function on environments defined by block B and the environment obtained

by updating 6 with the bindings in E'. 8’ \XB is the sub-environment of O'

obtained by restricting variables to those that appear as left-hand sides in B.

One may then evaluate fog{0') as follows.

13

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

www.manaraa.com

(1) Update the global environment 0 with bindings contained in O'.

(2) Compute the meaning of E' in this new global environment to obtain

new bindings for the left-hand side variables in E'.

(3) Update 0 with these new bindings.

(4) Evaluate fs,... with respect to this new global environment and the bind

ings, using as input the bindings for the left-hand side variables of B that

are given in O'.

It is easy to show that f£,g(0') is monotonic over the lattice Qx and hence

has unique least and greatest fixpoints. We then define [E]0 as follows.

[(p , B) :: E ']0 = pf<p,B)::E',e

If E is closed then for any 9, O' we have that [EJ0 = [E]^. In this case we often

omit reference to 0 and write [E] for this (unique) environment.

2.3 B oolean Equation System s

As an example, we consider the Boolean equation systems defined over the

Boolean lattice (0,1, Q , where 0 and 1 are the boolean values “false” and

“true”, respectively, with 0 II 1. In this setting environments may be viewed

as characteristic functions of subsets of X, so we allow the use of the standard

set operators U, fl, and — on such environments. The right-hand sides of

equations are the formulas given by the following, where X' C X.

f : = \ J x ' I / \ r

We often write t t for / \0 and ff for \J 0. The definition of [/]0 is standard:

[V X']0 = 1 iff r n 0 / 0, and [A *'10 = 1 iff X* C 0.

14

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

As we have pointed, Boolean equation systems have been widely used to

develop and optimize algorithms for finite-state model checking. Refer to

Mader’s thesis [78] for an introduction on Boolean equation systems.

15

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Chapter 3

Predicate Equation Systems

Predicate equation systems consist of systems of simultaneous equations whose

right-hand sides are first-order formulas. This chapter defines predicate equa

tion systems and develops a Gentzen-like proof system.

3.1 B asic D ata Theories

The predicate calculus we consider is parameterized with respect to the basic

data theory used to specialize the domain of discourse.

D efinition 3.1.1 Let T) be a set of data values and X a set of data variables.

A basic data theory over X and T) is a tuple (B Exp, "D Exp, fv, (—), |=, | —|),

where:

1. BExp is a set of data predicates;

2. T)Exp is a set of data expressions;

3. f v : (BExp U BExp) —> 2x is the free-variable mapping;

4. (—) : (BExp U BExp) x 'DExpx —> (BExp U BExp) is the substitution

function (notation: b(f) for (—

16

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

23

www.manaraa.com

5. [= C *DX x 'BExp is the interpretation relation (notation: p (= b for

M P,b));

6. | —| : BExp x rDx —> “D is the evaluation function (notation: \b\p for

i- i (m ;

and such that the following hold.

1- W)) (g) = b(f <g), where

(f < 9)(x) = <
g(x) if x e domfg) — dom(f)

f (x)(g) otherwise

\e(f)\p = l e U l / | P] > where \f\p is defined by: (\f \P)(x) = \ f(x)\p.

In (®Exp, T>Exp,fv, (—),[=, | — |), 'BExp is a set of atomic predicates about

data values; DExp is a set of data-valued expressions; fv(b) the set of free

data variables in fe; and b(f) is the result applying substitution / to expression

b. If p (= 6 then p makes b true, while \e\p is the result of evaluating e in

p. If {xi , . . . C X we use the term assignment for the function (x\ :=

e \, . . . x n '■= en) in DExpx. We often use x := e to represent an assignment

and call elements of T>x data states.

S ta te -tran sfo rm atio n form ulas A state transformation specifies how cur

rent values of variables will be related to new values after the transformation.

To formalize state transformations, let X' = {x' \ x € X} represent the set of

“primed” versions of data variables. Then a data predicate A e *BExp over

the variable set X U X' may be seen as the specification of a state transforma

tion. We refer to formulas such as A as state-transition formulas and use A to

represent the set of all such formulas.

Semantically, state-transformation formulas are interpreted with respect to

pairs {p, pf) of data states, where p represents the “current” state and (/ the

17

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

“next” state. We write (p, p/) (= A when A is made true by taking the values

for the variables of X from p and the variables of X' from p'.

Note that the assignment function x := e actually defines a state-

transformation formula. We sometime also write the assignment as a7 = e.

3.2 T he P redicate Calculus

The predicate calculus is used to define the right-hand sides of predicate equa

tion systems. Our account of the predicate calculus is parameterized with

respect to a set X of predicate variables , a set D of data values, a set X of

data variables, and a basic data theory B = (*BExp, DExp, fv, (=, | —|) over X

and D. The formulas are given as follows, where b e 'BExp, X 6 X, i e X,

and A is a state transformation formula.

<t> ::= b | -ib | 4>\ V fo \ <t>\ A | X \ 4>[A] \ 3x.<t> \ Vx.<t> (3)

The operators are standard, except for X and <p[A}. As formulates may contain

predicate variables, operator 4>{A\, which is usually a meta-operation, may

be thought of as a generalization of the substitution operation. To define it

precisely, if p is a data state then define post(p, A) = {p1 \ (p, p') (= A } to

be the “post-states” of p after A. Then p (= 4>\A\ holds exactly when every

post-state (J € post(p, A) satisfies <f> (p' |= (f>).

The definition fdv(<t>) of free (data) variables in <f> is given in the usual

manner, based on the definition of fv given in the basic data theory; the

definition fpv(<t>) of free predicate variables is standard. We call a formula 0

predicate-closed if fpv(<f)) = 0 and closed if fpv(<fi) = fdv(<j)) = 0. We often call

formulas generated by the above grammar predicates.

Predicates are interpreted with respect to a data state p and a predicate

state 8 G (2^‘vpĉ)x mapping predicate variables to sets of data states. We write

18

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

www.manaraa.com

p \=g (f) to denote that formula 4> holds in data state p and predicate state 0.

The definition is as follows.

p 1=0 b iff p \= b (i.e. wrt basic data theory)

p (=0 ->b iff pY=b

p 1=0 <P i v <t> 2 iff p |= 0 4>i or p |= 0 <p2

p 1=0 <P i a d>2 iff p [=0 (pi and p \=e <p2

p 1=0 X iff p e 9(X)

p \=o m iff for all p1 6 post(p, A), p' \=g <p

p 1=0 3x.(f> iff for some d € D, p \=e <P[x' = d\

p 1=0 Vx.<f> iff for all d eT), p (=0 <p[x' = d]

We use \< p \g to represent the set {p \ p \ = g < p } . If a formula <p is predicate-closed,

then \<f>\g = \< p \g > for any 9 and O '; in this case we write \< p \ for this common

value. Finally, while negation is restricted in the logic, every predicate-closed

formula (p has a formula not(^) that is semantically equivalent to (p's negation.

3.3 P red icate Equation System s

Predicate Equation Systems (PESs) consist of blocks of equations of the form

X = <f>, where X is a predicate variable and 0 is a predicate. Such a system

is intended to define a mutually recursive family of predicates, one for each

equation. Since a given equation can have several solutions, blocks in PESs

are equipped with an indication as to whether the “least” (most restrictive)

“greatest” (most permissive) solution is intended.

D efinition 3.3.1 A predicate equation block has form (p ,E), where p e
{/x, î } is the parity indicator and E = (E \ , . . . , En) is a finite sequence of

equations of form Xi = (pi, with the X± distinct predicate variables and each (p

a predicate.

19

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

In predicate block (p, E) p determines whether the “greatest” (v) or “least”

{ji) solution of the equations is intended. We write \bs(B) = {Xi , . . . ,X n}

for the left-hand-side variables in block B and rhs(B) = {0j , . . . , <f>n} for the

right-hand-side predicates.

D efinition 3.3.2 A predicate equation system (PES) is a finite sequence

(B \ , . . . , Bn) of predicate equation blocks with the property that if i ^ j , then

IhsiBi) n Ihs(Bj) = 0.

The notions of Ihs and rhs can be extended in the obvious manner to PESs.

We call a PES P predicate-closed if Û erhsCP) f P ^) - I M O -

Exam ple 3.3.3 As an example, we consider the following PES, where the set

of data variables X = {x, y}

X Atl = X a ,2 V ((x < 8 —> X At2{ 3 6. 6 > 0 A x ' = x + 5 A y ' = y + 6

Ax' < 8 A y' < 8]) A (y > 5 ->• X B,i[x' = 0]))

 ̂ X A2 — x > 7

X b , 1 — X b,2
k X B'2 = X > 7

PESs are interpreted using fixpoints of monotonic functions defined over

the complete lattice given by 2 ^ ^ (i.e. the lattice of sets of data states,

ordered by set inclusion). Given a predicate environment 6, a predicate 4>

containing free predicate variable X may be seen as a function f g over this

lattice as follows:

fe{S) = [0]e[x:=s]-

A complete account of fixpoint equation systems is given in Chapter 2, and

the semantics of PESs may be seen as an instance of this, where the lattice Q

is taken to be 2

20

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Given a “starting” environment 0, the semantics, [P |0, of PES P is an

environment O' that, for any equation X = E of P, satisfies:

^ (^ 0 — \E\$>[x:=e'(,x)]-

and is appropriately extremal. Note that if P is predicate-closed, then

[P]e(X) = [P]e/(X) for any X e Ihs(P) and 9, O'. Based on this observation,

it follows that if ^ is a predicate, P is predicate-closed, and fpv(4>) C Ihs(P),

then

Min.= M
for any 9, O'. In this case we write \4>\p for this common value, and if a E \<f>\p

we represent this notationally as o (=p <j>.

3.4 G lobal A pproaches to T autology C hecking

Generally speaking, model-checking problems can be solved by proving the

tautologiness of a logical formula which contains predicate variables from PESs

(We will show this later). The global approach usually involves computing

solutions for all predicate variables of the PES.

The iterative strategy for computing the solution to fixpoint equation sys

tems, of course, implies a general approach for model checking. The strategy

is based on the following technique for computing solutions to basic blocks.

1. Assign each lhs variable the correct extremal value (T for i/, _L for fi).

2. “Iterate” by evaluating the right-hand side of each equation using the

current assignment to derive a new assignment. Terminate when there

is no change.

For PESs, this strategy may be realized symbolically in the obvious man

ner: for a i/-block, start by assigning each lhs predicate variable t t , then iterate

21

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

by replacing each occurrence of a lhs variable in a right-hand side and com

paring the new expressions with the previous ones. Terminate when there is

no change. Note that in general, this strategy might not terminate. First, the

basic data theory may not decidable, so mechanically testing formula equiv

alence cannot be done. Second, the number of iterations needed may not be

finite.

Traditional global finite-state model checkers use this strategy, as do

both [32] and [64]. In [32], the authors note that, even though Presburger

arithmetic is decidable, their procedure is not guaranteed to terminate, owing

to the second condition above. In contrast, the restrictions in state predicates

in [64] do guarantee termination.

The paper [45] restricts the allowed form of predicates mentioned in [32] so

that the only basic comparisons allowed mirror those of [64], albeit for integers

rather than real numbers. In this case, the iterative fixpoint calculation is

guaranteed to terminate. This fact, together with the PES formulation of

real-time model-checking, therefore suggests a novel approach to discrete-time

model checking. Rather than expand a discrete-time model into a concrete

transition system (which is detailed in Section 4.1) by “exploding” delays into

sequence of clock ticks, mirror the definitions of timed-automata / real-time

programs, albeit in the setting of integers, then use the symbolic approach here

combined with the observation of [45] to conduct model checking symbolically.

3.5 A G entzen-Like P roof System

Significant attention has been paid to local, or on-the-fly, approaches to finite-

state model checking. In the setting of BESs, this amounts to computing

the solution of a single (propositional) variable rather than the values of all

variables. In the case of data-based model checking, on-the-fly techniques have

22

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

received little attention, although in the case of real-time model checking the

subject is discussed in [96]. In the remainder of this section, we present a

local model-checking framework for PESs that is based on a Gentzen-style,

goal-directed proof system related to ones given in [22, 69].

The proof rules operates on sequents of the form: $ \- ip, where $ =

{4>i,. . . 4>n} is a set of predicate-closed formulas, and V' is a predicate. We

interpret $ h i[> as the formula / \ $ —► ip. The rules for the proof system

are given in Figure 2 and follow the following syntactic conventions: <p, (p,

are predicate closed, while ip,ipi need not be; $, p is short-hand for $ U {</>}.

Conclusions are also written above subgoals, which are separated by a

Rules Vi — A are familiar from the predicate calculus; note that instead of left-

and right- rules for each construct as in [98], we rely on rule S combined with

the fact that the not function “drives” negations inside. The remaining rules

are for the substitution operator and predicate variables.

The definition of strongest postcondition post can be lifted to a set of states

defined by the constraint $ as follows.

post($, A) = {f / \ {p, p') [= >1 and p]= $}

and the weakest precondition is defined as the following,

pre($, A) = {p] {p,p') [= A => p' |=

The rules also share an implicit side condition: they may only be applied

to non-leaf sequents in a proof. These are defined as follows.

Definition 3.5.1 Let a be a sequent of form $\~P ip. a is a (successful) leaf

if one of the following conditions holds.

(1) ip € ‘BEocp or if = -h for some b e 'BExp (successful if \A $ —> ip] =

V x).

23

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

www.manaraa.com

V 3

A

0

s

T

3

V

CALL

$ hp Ipi V l/>2 $ hp V’l V V’2
------------------- V2 -------------------

$ I- p 4’i $ hp 1P2

$ h p < ^ v V ’ $ h p tp y 4>
V4<1>, not(0) \-p ip not(</>) hp t/i

<j> hp jy A 1p2
$ I- P l / > i 5 $ l ~ p t j .)2

<j> hp y>[A]
post(4>, A) hp V’

Pp V’
$ hp not(</>) V ip

^ 1 <P >~p i ’
$ h p ip

$ hp 3x4’
$ hp 1p[x' = f]

$ hp Vx-V’
$ hp 4>[x' = y\

3>h P X

(t 6 DExp)

(y a fresh data variable)

$ hp %p
(X = ip is an equation in P)

Figure 2: A Gentzen-like proof system for PESs.

24

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

(2) ip € $ (always successful).

(3) ip = X with parity p, and there is another sequent a' of form $>' \~P X

on the path from the root node of the proof to a with the property that

no a" : <f>" \~P X " such that X " has parity different than p and X " is

defined in an earlier block in the PES than X , and $ logically implies

$>'. Such a leaf is successful if the parity of X is u.

The definition of (successful) leaf is based on the one given in [69], which

also gives a success criterion for leaves involving //-formulas. This criterion is

not needed in this work, so we omit further mention of it.

A proof built using these rules is valid if and only if it is finite, every path

ends in a leaf, and every leaf is successful. The following is true.

Theorem 3.5.2 (Soundness) The proof rules in Figure 2 are sound: if $ \-P

ip has a valid proof wrt PES P then 1$ —► ip\P = “Dx .

Proof: By induction over the derivation of $ \-P ip. The inductive step

involves proving soundness of each rule in the proof system. And for each rule

of the form
a

® i) * • *» &n
we have to show that if the soundness hold for each subgoal o \ , . . . , <rn, then the

goal <j is also sound. During the proof, we will also point out the completeness

if applicable.

The soundness of most of the rules is straightforward;

• Rule V4 is sound and complete since (not(<I> A not(<̂ >)) V ip) = (not($) V

(<p V ip)), so are rule Vi, V2, V3.

• Rule S is sound and complete since (not($>)Vnot(0)VVO = (not($>A0) V^)

25

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

• Rule T strengthens the proof obligation by weakening the left-hand side.

It is sound since not(4>) V V’ implies not($) V not(^) V note that this

rule is not complete.

• Rule [] is sound and complete; Note that the operator ip\A\ actually de

fines the weakest precondition pre(ip, A); The proof follows the definition

of predicate transformers, and can be found in [94].

• Rule 3 is the standard skolemization technique to eliminate existential

first-order quantifiers. Skolemization does preserve the satisfiability of

formulas. This rule is sound and complete.

• Rule V eliminates the universal quantifiers by introducing a fresh free

variable. It is sound and complete.

• The termination condition in definition 3.5.1 (3) is similar to the case

of boolean equation systems [39, 78]. The requirement that there is no

such a X " with alternative parity is used to guarantee the monotonicity

of the underlying semantic function. $ =>• indicates that we have

reached a loop in the proof. Such a loop for predicate variable with

greatest fixpoint can be identified as a successful leaf according to the

fixpoint definition. While a loop for least fixpoint means that the proof

need to continue until condition 3.5.1(1) or (2) is reached. The proof for

the least fixpoint variable needs the well-founded induction. Interested

readers are referred to a similar proof detailed in [69]. Note that the

state space consists of data states in their model checking problems.

■

In general, the proof rules are not complete; proofs may require the appli

cation of T rule, and the data theory may not be expressive enough to define

26

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

the necessary property. One must also be able to determine the validity of im

plications in the basic data theory. One may identify data theories for which

completeness does hold.

27

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Chapter 4

Transition Systems and the

Modal Mu-Calculus

In this chapter, we show how model checking can be reduced to computing

solutions of PESs. The basic approach consists of showing how, given a sym

bolic system model and a formula in the first-order mu-calculus, a PES may

be generated whose “solutions” are answers for the model-checking problem.

This chapter lays the foundation for this approach by introducing our sys

tem model, symbolic transition graphs, and our temporal logic, the first-order

mu-calculus.

4.1 C oncrete Transition System s

Fix a set of data values D, a set of data variables X, and a set A of communi

cation port names not containing a distinguished value r . The set of concrete

actions .Actc is given as

A c tc = {Aid | A e A,d eD}U {A?d l A E A j d E D J U l d l d E ^ J u l T } .

28

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Actions have the usual interpretation: A!d represents the emission of value d

on port A, and A Id the receipt of value d on A. r denotes the internal action.

Definition 4.1.1 A concrete transition system (CTS) is a tuple (E, V —>c

, £/) , where E is the set of states, V : E —> T>x the valuation function, —>CQ

E x A ctc x E the transition relation, and E / C E the set of start states.

A CTS models the behavior of a system. We write a A c a' for (cr, a, a'} 6 —>c-

4.2 T he First-O rder M odal M u-C alculus

To specify system properties, we use first-order modal mu-calculus [99] and

modal equation systems (MESs). The former enhances the predicate calculus

with modal operators; MESs are like PESs whose right-hand sides of MESs axe

mu-calculus formulas. Fix basic data theory (BExp, T)Exp,fv, (—), [=, | —|) and

set A of port names. Then first-order mu-calculus formulas have the following

form, where e E ©Exp and A € A.

<t> (operators from Equation 3) |

{r)<f> | [r\<f> | (\\e)4> | [A\e\<f> | (A?e)<f> \ [A?e\<f>

The notions fpv axid fdv of free formula / data variables may be adapted in the

obvious manner. We call a mu-calculus formula <f> formula-closed if fpv(<j)) = 0.

The semantics of modal mu-calculus formulas is given with respect to a

CTS C = (E, V, —>c, E/), and takes the form of a relation a \=c,e <P, which,

given an environment 9 E (2s:)x mapping formula variables to sets of CTS

states, determines whether or not a CTS state satisfies 4>. This relation is

given as follows.

29

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

cr I= c,e b if f V(a) \= b

a \=C,9 - 6 if f V{a) ¥= b

cr \=C,9 01 V 02 if f a | 0 i o r (= c ,e 02

a \=C,9 01 A 02 if f cr \=c,9 0i a n d cr |= c ,e 02

a 1=C,9 X if f a € 0{X)

a \=C,9 m if f o \=Cfi pre(0, A)
cr \=C,9 3a;.0 if f th e r e is s o m e d € *D, cr \=c,e 4>[x' = d]

a 1=C,9 Vx.0 if f for a il d € 2) , a (= c ,e <t>[x' — d]

a \=C,9 <r)0 if f th e r e is o’ s . t . cr ^>c o' a n d cr7 \=c<g 0

<7 \=C,9 [r]0 if f for a ll cr' s . t . cr c cr7, cr7 \=Cig 0

cr I=£7,0 (A!e)0 if f th e r e is cr7 s . t . cr cr7, \e\V (a) = d, a n d cr7 (=Cj9 0

(7 |=C,9 (A?e)0 if f th e r e is cr7 s . t . cr cr7, |e|v(<r) = d , a n d cr7 (=ce 0

(7 |=C,9 [A!e]0 if f for a ll cr7 s . t . <7 cr7, |e|v(cr) = d , a n d cr7 |= C 0 0

cr \=C,9 [A?e]0 if f for a ll cr7 s . t . cr —>c cr7, |e|v(CT) = d, a n d cr7 |= C 0 0

Note that the semantics of the modal operators are different from the ones

given in [75, 91]. Here, in (A?x)0 the x in 0 is not bound, while in the other

work this is the case. Our logic only permits variables to be boimd using V

and 3. Also note that pre(0, A) defines the weakest precondition of 0 with

respect to the state-transformation formula A.

We define [0]c,e = {cr | a \=c,e 0}- We may now apply the general fix

point equation system theory to define the semantics of mu-calculus equation

systems. The lattice in question is 2s ordered by set inclusion, the semantics,

[AfJ c,0 i of mu-calculus equation system M is an environment mapping each

X € Ihs(M) to a set of states that is the appropriate solution for the equation

defining X .

We also adapt the definitions of predicate-closed-ness from PESs to

formula-closed-ness in the obvious manner. If MES M is formula-closed then

30

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

\M \c,o(X) = \ M\C'ff'(X) for any X e Ihs(M) and 9,0', and we write [MJC

for this value. It also follows that if M is formula-closed and 4> is such that

fpv{4>) C Ihs(M), then

M i- ic , = \4>\[m\C9,

for any 9,9'. When this holds we use [<P]c,m for this value, and we write

g [=c,Af <t> if g €

From C TL to M ES The first-order modal mu-calculus we introduced are

expressive enough to encode the CTL-style temporal formulas [85]. To provide

the translation, we can take use of the standard fixpoint characteristics of

temporal operators. Assume the CTL formulas axe in positive normal form,

i.e. all negations have been “pushed” inside formulas until they reach atomic

formulas. Then it is sufficient to give accounts of the following formulas [43].

A(<t>\Wfa) = uX.{4>2 V (0! A [r]*))

E ifo W fc) = v X . fa V (</>! A <t)X))

A(<f>\U4>2) = V (<f>i A [t \X A (r)tt))

E fa U fa) = nX.(<t>2 V (</>! A (t)X))

In the above, A and E are the universal path quantifier and the existential path

quantifier respectively; W is the “weak” path operator, and U is the “strong”

path operator. A state s satisfy AfyiU fa) if along every computation path

beginning with s, <f>\ holds imtil fo does; A state s satisfy A(4>\W<fo) if either it

satisfy A(<piU<f>2), or when (f>2 does not necessarily hold, <f>i holds everywhere.

Note that the translation is linear-time and does contain only internal

communication actions since CTL does not distinguish communication events.

31

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

Example 4.2.1 4 s an example, we consider the first-order CTL formula

AF(x > 7), the corresponding MES is the following.

X x = X 2 V [t]Xi

X 2 = x > 7K.

4.3 Sym bolic Transition Graphs

Our symbolic system model, Symbolic Transition Graphs(STGs), extends the

STGA formalism of [75] with state transformation formulas. This extension

enables STGs to encode a range of other symbolic system formats, including

the value-passing CCS in [42], Linear Process Equations [59], the event-action

language in [32], and timed automata [64].

Fix value set T), variable set X, and data theory ('BExp, DExp,fv, (—),]=,-

|—|) over V and X. Let $ be the associated set of predicate-calculus formulas.

Also fix a set A of communication port names not containing the distinguished

name r , and define the set of symbolic actions

Acts = {A?i | c € A, x G X} U {Ale | c € A, e € DExp} U {r}.

Then STGs are defined as follows.

Definition 4.3.1 An STG is a tuple G = (S , R, S j , InitG), where:

1. S is a finite set of control locations;

2. f l C S x $ x A x A cts x S is a finite set of transitions.

3. Sj C S are the initial locations; and

4. InitQ € "BExp is the initial condition.

In STG G = (S', R, S}, InitC), 5/ contains the possible starting locations and

InitC the initial condition on data variables. Based on the current control

32

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

location and data state, transitions may fire, with data variables and control

locations being updated.

With this intuition in mind, let us more closely examine the structure of

transitions in an STG. Each transition is a tuple (s, 0, A , a, s'), where s and s'

are the source and target control location, respectively. 0 determines when the

transition can “fire”; a state transformation formula A update data variables;

and a communication action a.

Semantically, an STG G = (S , R, 5/, InitC) is interpreted as a CTS Cg =

(E, V, —>c, £ /) as follows.

1. E = S x D x . Note that in (s, p), p provides values to the data variables.

2. V((s,p)) = p.

3. (s,p) -̂ *c (s ',//), iff there is (s ,0, A, a ,s ') 6 R , and p" with:

(a) p \= 0, p" e post(p, A), and

(b) either:

i. a = r and p' = p"; or

ii. a = Aid, a = Ale, \e\p = d, and pi = p"; or

iii. a = A?d, a = \?x, and p' = p/'[x' = d}.

4. <tj = {(s/,p) | Sj G S/ ,p (= Inite}

E xam ple 4.3.2 yls an example, considering the simple STG in Figure 3,

where the set of data variables X = {x, y}.

STG s and th e M u-C alculus. The definition of Cg implies an immediate

interpretation of the mu-calculus with respect to STG G. In addition to the

other notations defined for the mu-calculus, we also introduce the following.

33

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

> 0 A x ' = x + 8 A y ' = y + 8 Ax ' <

Figure 3: A simple symbolic transition graph

Let 0 be a mu-calculus formula, and s a control location in STG G, and let 6

be a mapping of mu-calculus formula variables to sets of states in CG. Then

I^le(s) = {p | {s ,p) € [(j>\cG,e}-

That is, the “semantics” of a control location s vis a vis a formula is the set of

data states that, when combined with s, make the formula “true”. Similarly,

if M is a formula-closed MES, and 0 is a mu-calculus formula with fpv(4>) C

Ihs(M), we write [^lc,Af(s) for {p \ {s ,p) € \4>\cg,m }- In this case, we also

say that a STG G satisfies a mu-calculus formula <f> with respect to equation

system M (written G (=at (f>) if for all S/ G 5/, {p | p (= InitC} C [^ |G,Af (s/).

4.4 From M odel C hecking to PE Ss

The model-checking problem for STGs is: given STG G , formula-closed MES

M and X € Ihs(M), does G \=m X? This section shows how to translate this

question into an equivalent one involving PESs.

The key problem to be addressed is the symbolic representation of the set

[A]]g,m(s/) for every s/ € Si. This is achieved by constructing a PES equation

for each state in G and equation in M. Formally, we define a function F that,

given a STG G and formula-closed mu-calculus equation system M, yields a

predicate-closed PES F(G,M). F is applied on a block-by-block basis; that

34

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

is,

F(G, <£, , . . . , Bn)) = (F(G, B 1) , . . . , F(G, Bn)).

While F(G, B) = F(G, {p, E)) in turn yields a predicate equation block of

form (p, £ '), where for each equation X = <j> in E and control location s in

G, there is an equation of form Ys X = F(s, <f>) in E'. F(s, (f>) is defined in

Figure 4.

Exam ple 4.4.1 An as example, the PES given in 3.3.3 is generated from the

STG 4-3.2 and the MES 4.2.1.

Lem m a 4.4.2 Let G = (S, R, Si, InitC) be an STG with the interpretation

Cg = (£, V, —>c, £/), and M a closed MES; Let 6 be a mapping of mu-calculus

formula variables to sets of states in Cg, O' be a mapping of predicate variables

to sets of data states; I f for any X e lhs(M) and any s G S, 6(X)(s) =

Ol{Ys,x), then for any 4’, we have = [F(s, ip)\e>

Proof: The proof proceeds by structural induction on the formula 4 ’-

For the base case, [.Y]e = [Ys<x\e> = |F (s, VOl#'-
Most cases are routine; We consider here the case when ip is (r)V’-

A data state p £ [(T)y’Ie(s) if only if there is a transition (s, [3, A, r , s’) £ R,

p \= 0 and post(p, A) £ [V;l«(s/)) since [y>le(s') = [F (s ',^)]0' (the inductive

assumption). we have

P He' V ^ A F{s',ip)\A\ | (s, 0, A, r, s') £ R}.

It follows that

l(T)ip]e(s) = [\/{/3 A F(s',4’)[A\ \ (s , 0 , A , r , s ') £ R}]6'

= [F(s, {t)iP)\o>

■

35

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

F{s,b) = b

F(s, -ib) = ->b

F fa fa V fa) = F(s, (f>i) V F(s, fa)

F(s,<fri Afa) = F(s, (pi) A F(s, fa)

f (s , x) = n ,x

F(s, 3x.(p) = 3x.F(s,(f))

F(s,Vx.<f>) = Vx.F(s,<j))

F(s, <p[A\) = F (a ,0 P]

F(s, (r)<t>) = \ / { 0 A F(s', 4>)[A] \ (s, 0, A, r, s') € R}

F (s , [t \4>) = / \{ 0 -► F(s', <j>)[A) | (s, /?, 4̂, r, s') e F}

F(s, (c\e)<f>) = \J{0AF(s ' ,<t>)[A}\ (s ,0 ,A,a , s ')eRA(a = c\e)}

F{s,[c\e\<f>) = f \{ 0 -► F(s',<l))[A] \ (s,0, A, a, s') e R A (a = c\e)}

F(s,(c?e)<p) = \J{0 A F(s',4>)[A}[3/= e] \ (s ,0,A,a, s ') E R A a = clx}

F(s, [c? e] 0) = A {P “ *• = e] | (s ,0,A,a, s ') e R A a =
c?x}

Figure 4: Translation function for PESs

36

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Theorem 4.4.3 Let G = (S, R, Sj, InitG) be an STG, and let M be a closed

MES. Then for any s € S and any X e //js(M), p f]G,Af(s) =

Proof: The proof proceeds by establishing the connection between the

semantic function for MES and the generated PES.

Suppose X = { X u . . . , X„} are the formula variables in M , X is the set

of data variables and T) is the data domain. Let S = {si , . . . , sm}. Then the

semantic used to interpret M is given by / : (S x T)x)x —> (5 x *DX)X; Since

for each X e X and s e S , F(G , M) will generate a predicate variable YsX for

the PES, the semantic function for the PES is given by g : (DX)Y —> ('DX)Y,

where Y = {V*iX I s G S, X € X}. Let a be the parity of the block, then the

fixpoint o f encodes the solution to each formula variable in the MES and ag

contains the solution to each predicate variable in the PES.

For each semantic set Xi : S x D x, we construct a set Ys Xi ■ {d \

{x,d) € Xj}. Then the input (X i , . . . , X n) to function / becomes the input

(Y.uXl , - - - ,YsuXn, - . . , y;m,Xl, ■ • ■, X5miXJ to fimction g. Given one solution of

/ , we can construct the solution for g and the vice versa. We can conclude

that the relationship between the solutions of the two semantic functions as

illustrated by Figure 5.

a f (X u . . . , X n) = (aXu . . . , a X n)

• 1 Psm.XT,)

Figme 5: The relationship between the two semantic functions

37

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

4.5 F in ite-S tate M odel Checking w ith P E Ss

As mentioned in the introduction, BESs play a central role in model checking of

finite-state systems. These equation systems resemble PESs; the key difference

is that BESs contain prepositional, rather than predicate variables. Each such

variable represents whether or not a given state in a system satisfies a given

temporal formula.

For finite-state systems, our PES-generation procedure returns BESs. To

illustrate this, we consider system descriptions given as CTSs as described in

Section 4.1, where there is exactly one data value, d, and formulas are given in

the equations! prepositional mu-calculus (MESs without quantification whose

only data expression is the constant d).

Formally, define the sets T) = {d} and X = {x}; the basic data theory we

use takes ®Exp = {tt} and DExp = {d}; the function fv returns 0 for any

argument, (—) is trivial, and a |= tt holds always and \d\a = d for any a. Note

that the set T>x = {a} contains exactly one element.

Given these definitions, a CTS C may be encoded as a STG Pc . The control

locations of Pc are exactly the states of C, and data variable x is needed

because input transitions need an assignable variable. For each transition

s —> s' in C, we generate a transition of the form (s ,t t ,x ' = x, a, s'), if

a € {r, Aid}, and (s, tt, x1 = d, A?x, s'), if a = A Id. The initial control locations

are the initial states of C, and InitC = tt. It is easy to see that the CTS where

the semantics of STGs associates to Pc is isomorphic to C.

Since the equational prepositional mu-calculus is a sublanguage of MESs,

our PES generation procedure may be applied to Pc and an equational system

M. All quantifiers can easily be eliminated from the resulting PES. Moreover,

since D x contains only a, the semantic lattice for predicates consists of two

elements: {a} (“true”), and 0 (“false”). Each predicate variable may thus be

seen as a prepositional variable, and the PES is isomorphic to a BES.

38

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Using a similar encoding, Mateescu’s parameterized boolean equation sys

tems [81] can be regarded as instances of our PESs.

39

R ep ro d u ced with p erm iss io n o f th e cop yrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Chapter 5

Real-Time Model Checking

with PESs

This chapter shows how PESs can be used to encode (parametric) real-time

model-checking problems. In this setting, systems are modeled as (parametric)

timed automata and properties are specified with real-time modal mu-calculus.

An efficient on-the-fly (parametric) model-checking algorithm is developed by

providing specialized proof rules.

5.1 Param etric T im ed A utom ata

Real-time systems are often modeled as timed automata [2], For the conve

nience of statement, we use parametric timed automata to model both non-

parametric and parametric real-time systems. We began by introducing some

terminology and notation.

Throughout let C be a finite set of clock variables ranging over x, y , . . . , Act

a finite set of actions (transition labels), 7 a finite set of parameter variables

ranging over a, 6 , . . . , and a, (3 linear terms defined over 7 and integer constants

in the usual way: each has form n + JT r^a, where n and each n< are integer

40

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

constants and each a, € 7. The set of state predicates is defined by the

grammar.

(fis := a ~ P | x ~ q | x — y ~ a (4)

where ~ e {<, <, =, >, >}. A parameter may assume any value in a fixed finite

set of integers V (in practice different parameters would have different domains,

but for simplicity in this paper we assume a single domain of possible values

for all parameters). We write the set of state predicates as 4>. Throughout we

let T> = R+ U {0} be the set of possible durations and X = C U 7.

A parameter valuation is a mapping u e V3’ (recall that V7 is the set

of mappings from 7 to V) that assigns a value to each parameter. Given

a parameter valuation u, a system state p e D x satisfies: p(a) = ui(a) if

a E 7. If p is a system state and 5 6 7) then p + 5 is the new state p[x\ :=

p(xi) + S, . . . , xn := p(xn) + J], which updates each clock variable Xi with a new

value p(xi) + 8 and agrees with p otherwise. State predicates are interpreted

with respect to system states in the usual fashion; we write p (= ip when this

is the case.

D efinition 5.1.1 A parametric timed automaton (PTA) is a tuple T =

(S, R, L, Si), where:

1. S is a finite set of control locations;

2. R C S x $ x 2C x Act x S is a finite set of transitions,

3. L E is a mapping that assigns to each location a state predicate, called

the invariant for that location, in 4>;

4■ Si Q S are the initial locations

Intuitively, time can elapse in a location only as long as its invariant remains

true; when the current location is s, a transition (s , ip, C, a, s') may be executed

41

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

when the trigger condition ip is satisfied, with the clocks in C being reset to 0

and control location switched to s'.

Semantically, given a parameter valuation u> G V7, a parametric timed

automaton T = (S , R, L, S'/) can be interpreted as a concrete transition system.

Given u and T, CTS C ^T = (£, V, —>c, E/) is defined as follows.

1. E = {(s, p) G S' x T>x | for each a 6 IP,p(a) = u>(a)}.

2. V((s,p)) = p.

3. There are two types of transitions in CT.

(a) Time advance: (s, p) —>c (s,p') for 6 G K iff for all 0 < 5' < 8,

p + 6 ' ^ L (s) .

(b) Transition firing: (s, p) -̂>c (s', p/) iff there is (s, <p, C, a, s') G R

with: p (= L(s) and p f= <p and f! = p[C := 0]

4. a i = {(s/,p) | si G S I } p \= L(si) and p(x) = 0 for each x G C}

t t ; y := 0 ;r

z < a; z := 0 ;r

Figiu'e 6: A parametric timed automaton with two clocks

Exam ple 5.1.2 Consider the parametric timed automaton of Figure 6 with

two clocks. The clock y gets set to 0 each time the system switches from location

S0 and S i . The invariant y < 2 and y < 1 ensures that the switch from Si

happens within time 2 and from S ̂ within time 1. Parameter a specifies the

upper time limit over clock z when the transition from S 2 happens.

42

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

5.2 T he R eal-T im e M odal M u-C alculus

The real-time modal mu-calculus [96] can be used to specify system properties.

We define formulas with MESs , which consist of blocks of equations of the

form X = 0, where X € X is a formula variable and 0 is a formula defined by

the following grammar.

0 ::= | 0i V 02 I 0i A 02 | (a)<f) | [a]0 | 30 | V0 | x.(j) \ X

In the above, a £ .Act is an action while x € C is clock. Operators (a)<j> and

[a\<f> are called modal operators; these, together with V and A, are standard

from the propositional modal mu-calculus [72]. <p, is a state predicate; x.0 is

a reset operator; and 30 and V0 allow us to reason about time successors of a

state.

The semantics of the real-time modal mu-calculus formulas is given with

respect to a CTS C = (£, V, —>c, £ /), and takes the form of a relation o \=c,e <t>,

which, given an environment 6 : X t—► 2E mapping formula variables to sets

of states, determines whether or not CTS state o satisfies <f>. This relation is

given as follows.

o-]=c,e<Ps iffV(a)(=y?s

<7 \= c,e x iff a G 0 { X)

o N c.e 0 i V 0 2 iff o \= c,e 0 i or o N c,e 0 2

o]= c , 0 0 i A 0 2 iff o j= c ,e 0 i and a \= c,e 0 2

<7 (=c,fl 30 iff 3d S.t. <7 —>c o ' h o ' I= C fi 0

o |= c ,e W> iff s.t. a —>c o ' o ' \= c,e <t>

o (=c,e (a)0 iff 3a' s.t. a A c a ' A a ' (=c,e <t>

o \= c,e [a]0 iff Va' s.t. a A c a ', o ' \= c,e 0
a (=c,9 x.<f> iff a (=Ci9 0[x — 0]

43

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

We define \<j>\c,0 = | a \=Clg 4>}- We may now apply the general fixpoint-

equation system theory to define the semantics of MESs.

Exam ple 5.2.1 As an example, the following MES states that “after perform

ing the gate down action, it is always possible to raise up the gate within 5

units of time” [96].

(Y = V[—]V A V[down]z..Y

y X = 3(up)(r < 5) V (V[-up]X A 3(—up)tt)

The notation [—] is a shorthand for Aae/ictM; while [—up] stands for

Aae^rf-{up}N and (-up) /or VaeAd-{uP}(a)- Intuitively, [-up]<£ holds of a
state if every action transition labeled by something other than up leads to a

state satisfying 4>.

The real-time modal mu-calculus is expressive enough to encode many

timed temporal logics, including TCTL [64] . On the other hand, it can be

easily encoded by the first-order modal mu-calculus defined in Section 4.2.

Note that operator x.(f> can be encoded as <f)[x' = 0] and V<̂> can be rewritten

as VJ > 0.(f>[x := x + tf].

The definition of CuT implies an immediate interpretation of the mu-

calculus with respect to PTA T. In addition to the other notations defined for

the mu-calculus, we also introduce the following. Let 0 be a mu-calculus for

mula, and s a control location in PTA T, and let 6 be a mapping of mu-calculus

formula variables to sets of states in Cu>t . Then

\4>le(s) = {p | (s,p) 6 \<f>]cUtT,0 for all w}.

That is, the “semantics” of a control location s vis a vis a formula is the

set of system states that, when combined with location s, make the formula

“true” , regardless of the parameter assignment ui. Similarly, if M is a formula-

closed MES, and 0 is a mu-calculus formula with fpv{<})) C Ihs(M), we write

44

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

[0]T,Af(s) for {p | (s ,p) G \4>\cUtT,M for all u}. In this case, we also say that

PTA T satisfies a mu-calculus formula 4> with respect to equation system M

under initial (state-predicate-specified) condition <p (written T (=^ <f>) if for

all Si € Si, {p | p \= tp} C |<^Jt,m(s/).

5.3 From R eal-T im e M odel C hecking to P E Ss

The universal parametric model-checking problem may be phrased as follows:

given a PTA T, formula-closed MES M and X G Ihs(M), and a constraint

over parameter and clock variables, does T (=^ X ?

This section shows how to translate this question into an equivalent one

involving PESs. The translation is an customization of the general PES-

generation procedure. The key problem to be addressed is the symbolic rep

resentation of the set [.A]TiM(s/) for every s/ G 5/ in the parametric real-time

settings. Again, this is achieved by constructing a PES equation for each loca

tion in T and equation in M. Formally, we define the function F that, given a

PTA T and formula-closed mu-calculus equation system M, yields a predicate-

closed PES F (T ,M). And F is applied on a block-by-block basis; that is,

F(T, (£ ? !,...,£ „)) = (F(T, B O ,..., F(T, £?„)). F(T ,B) = F (T ,(p ,E)) in

turn yields a predicate equation block of form (p, E'), where for each equa

tion X = 4> in E and control location s in T, there is an equation of form

YSix = F(s, <f>) in E'. F(s, <f>) is defined in the following.

45

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

F(s, Vs) = Vs
F(s,<pi V (f>2) = F(s,<£i)V F(s,<f)2)

F(s, (f>\ A <f)2) = F (s ,^) A F (s > 2)
F(s, X) = Y.pc
F(s,3<t>) = 3d > 0.(F(s, <f>)[x := x + d])

F(s,V<t>) = Vd > 0.(F(s, <(>)[x := x + dj)

F(s,x.<j)) = F(s, 4>)[x := 0]

F(s, (a)(t>) = V{ V A (F(s', <t>)[C := 0]) | (a, <p, C , q, s ') e R }
F (s , [a](f>) = A{ V - (F(s',(f>)[C := 0]) | (s ,tp ,C ,a ,s’) e R }

T heorem 5.3.1 Let T = (5, R, L, S j) be a PTA and let M be a formula-closed

MES. Then for any s e S and any X e lhs(M), \X \TM (s) — [VSix1f(t, my

Proof: As an instance of the generic translation to the real-time domain,

Proof proceeds in the same way as Theory 4.4.3. ■

It follows that T \=̂ M X iff the statement T)x = [y> —> AS, e s, Ys, ,x \ f (t ,m)

is true.

Regions Alur et al. [3] defined an equivalence relation on the state space

of an automaton that equates two clock states if they agree on the integral

parts of all clocks values and on the ordering of the fractional parts of all clock

values. Let 6 € V , then 6 = |_<SJ + frac(6), where |_(̂) is the integral part

and frac(6) is the fractional part of 6. For each clock x € C, let cx be the

largest integer such that x is compared with in the PES. Given a parameter

valuation, the region equivalence relation = is defined over the set of all clock

states. For two clock state p\ and P2 , P\ — Pi iff all the following conditions

hold,

46

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

1. For all x € C, either [Pi(x)J and [/?2(x)J axe the same or both p\(x) and

P2 (x) exceeds cx;

2. For all x, y with p(x) < cx axid p(y) < Cy, frac{p\(x)) < frac(p\(y)) iff

frac{p2(x)) < frac{p2 (y))-,

3. For all x with pi(x) < cx, frac(pi(x)) = 0 iff frac(p2 {x)) = 0.

Given a parameter valuation, a clock region is an equivalence class of system

states induced by such an equivalence relation. Note that the number of clock

regions is limited by an upper bound, n! x 2" x FLec^c* + 2), where n is the

number of clocks.

Exam ple 5.3.2 Figure 7 illustrates the region equivalence for two clocks x

and y with cx = 3 and Cy = 2. There are 12 comer points, e.g. (1,1); 30 open

line segments, e.g. 1 < x < 2 Ay = 1; 18 open regions, e.g. 1 < x < y < 2.

-»■
x2 30 1

Figure 7: Clock regions

Clock Zones Given a parameter valuation lj € VT, a clock zone is a set

of clock states described by finite conjunction of state predicates. If the PES

has n clocks, then a clock zone is a convex set in the n-dimensional Euclidean

47

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

space. Clock zones improve the region construction by considering only the

convex union of clock regions.

5.4 O n-the-F ly R eal-T im e M odel C hecking

This section introduces a goal-directed proof system, which is customized from

the general proof system, for the solving of universal parametric real-time

model-checking problem based on PESs. The proof system is intended to

establish when a set of predicate-closed formulas $ = {4>\, . . . , <pn} implies a

formula ip containing predicate variables from a PES. The proof rules operate

on sequents of the form $ hp ip; & valid proof of such a sequent indicates

that [/ \ $ —► ip\p = T>x (i.e. the implication is a tautology). The rules are

given in Fig. 9 and use the following syntactic conventions: Conclusions are

also written above subgoals, which are separated by a ■ <P, <pi, <p, s, s' are

predicate closed, while ip,ipu need not be, and $,<p is short-hand for $ U {<p}.

Also note that s, s' are placeholders, whose meaning will be clear later.

Let <p be a predicate-closed formula and A = [x := e] an assignment. Then

the strongest postcondition, post(<£, A), of <p wrt A is defined as

post(0,x := e) = 3u.(x = (e[x := v)) A <p[x := u])

Note that <p hp ip[x := e] is valid if and only if post(0,x := e) implies ip. The

weakest precondition pre(4>, A) is defined as

pre(<£, x := x + 6) = Vv.(v = x + 6) —> <p[x := u]

We also have two derived operators,

• suct(<p) = 3<i.post(0, x := x + J), time successor of (p.

• pret((p) = 36.pre(<p, x := x + 6), time predecessor of (p.

48

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

y

X

y

X

Figure 8: The graphic representation of pret((f>) and suct((f>)

Rules Vi-CALL are familiar from our general Gentzen-like proof system.

Instead of a rule T and a cut rule [22] for the reasoning of case splittings like

the following,
<J> h p ip

$ bp <f> ; $,</>!~ p ip

(which in general can not be automated), we defer the computation of these

predicates by introducing placeholders for them in Rule V and Rule and us

ing a “backward” analysis of the proof tree to infer values for these placeholders

49

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

www.manaraa.com

$ b p V>1 V j i 2

$ bp ipi
$ f-F V tp2

$ b p lp 2

$ b p (f> y ip $ b p Ip \ / <p

$ b p V’l A V'2 CALL
b p ip i ; $ b p ip2

, $ b p t/>i V V>2
3>, s b p ^ i ; $, -is bp ip2

, $ b p V6. ip[x : = x + d]

1 SUCt($) b p Ip

$, s bp V8. ip[x := x + <J]
2 — —

suct($), s' b p ip ; sucf($ A s) b p st

 $ b p pret(rp)________
1 suc*($), s b p ^ ; $ b p pre t {s)

$, s \ - P p r e t (ip)
12 ---

sitQ($>), s' bp ip ; s bp p re t(s')

$ b p tp[A]

1 pOSt($, A) bpXp

$, S b p 1p[A\
2 ■

post(3>, A) , s' b p i p \ s b p pre(s', A)

LEAF <I>, s bp ip ,ion, s = false

Figure 9: A local approach for parametric real-time model checking.

if $ —> ip a tautology,

otherwise

def ^s = true

def

50

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

(see Rules 32, V2, []2). This strategy is inspired by the splitting technique used

in [96].

Rule V distributes the proof obligation into two subgoals by introducing

a placeholder s in the left subgoal. The splitting constraint s is first com

puted through the left subtree and then the negation of s is fed into the right

subsequent. For example, in Figure 10, s might be x < 4.

Rule 3i eliminates the existential quantifier by introducing a placeholder.

The right subsequent is used to tell the validity of the splitting s derived from

the left subtree. For example, in Figure 11, s might be the shaded region.

y

0 4 X

Figure 10: Example for rule V

Rules V2, 32 and []2 all have a right subgoal which is used to compute the

weakest splitting constraints s from s'.

The rules also share an implicit side condition: they may only be applied

to non-leaf sequents. These are defined the same as Section 3.5 for the general

Gentzen-like proof system.

Lem m a 5.4.1 We have the following implication hold,

pret(s) A $ => pret(s A sitQ($))

51

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

www.manaraa.com

y

o 3 4 X

Figure 11: Example for rule 3i

Proof: The proof proceeds as follows.

pret(s) A $ =3<5.pre(s, x := x + d) A 4>

= (p r e (s , x x + Si) V ■ • • V pre(s,x := x + Sfj V • • •) A $

=(pre(s, x := x + Jj) A 4>) V ■ • • V (pre(s, x := x + 6i) A $) V • • •

=(pre(s, x := x + <5i) A pre(post($, x := x + Ji), x := x + Ji)) V • • ■

=pre(s A post($,x := x + 6i),x := x + tfi) V • • •

=>pre(s A 3<5.post($, x x + d), x := x + di) V • ■ ■

=pre(s A suct($),x := x + <5i) V • • ■

=pret(s A siiCt(4>))

■

Figure 1 2 illustrates the Lemma with 3 cases. In each case, the shadowed

region at left-hand side graph represents pret(s) A 4>, while the shadow at the

right-hand side is pret(s /\suct($)). In (a), both sets are empty; in (b), $ and

s are joined, while in (c), $ and s are separated.

Theorem 5.4.2 (Soundness) / / \-P 4’ has a valid proof, then [/\ —>■

4>\p = ® x .

52

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

y

Phi

X

y

Phi

X

y

Phi

x

y

Phi

x

y

Phi

x

Phi
s Hr

Figure 1 2 : Examples for lemma 5.4.1

53

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

Proof: By induction over the derivation of $ bp ip. The inductive step

involves proving soundness of each rule in the proof system. And for each rule

of the form
a

(T \} . . . , (7n

we have to show that if the soundness hold for each subgoal o \ , . . . , an, then

the goal cr is also sound.

The soundness of most of the rules is straightforward;

• The soimdness of rule Vi — A, rule CALL and rule []i is obvious.

• Rule V is sound because -i$ V -is V ip and V s V ip imply - 1$ V ip.

• Rule V! is a bit more complicated. It depends on a derived sound and

complete rule
<f>l V <t>2 bp ip

<t> 1 bp V’ ; (f>2 bp i>
The left-hand side of the sequent 3J.post(<£, x := x+ J) b F ip is an infinite

disjimction. So the sequent is equivalent to a list of subsequents

post(<£,x := x + 6\) bp ip ; . . . ; post(0 ,x := x + Sn) h P t/j

Since the completeness of mle []i, this list is equivalent to

<f> bp ip[x := x + <Ji] ; . . . ; <f> h P 4>[x := x + <J„]

Prom the completeness of rule A, we have

<f> bp \p[x := x + <5i] A . . . A ip[x := x + <Jn]

which is equivalent to

<{> bp V<5.i/)[x := x + (5)

• The soundness of Rule V2 follows rule Vi. Since from suct(<t> A s) bp

suct($)/\s' and suct($) As' b P ip, we can conclude that suct($As) hp tp.

54

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

• Rule 3, is sound. The proof depends on the Lemma 5.4.1, pret(s') A4> =>

pret(s' A 5 UCt($)). And from s A suct($) hp tp we can infer that

pret(s A suct($)) \-P pret(tp).

Then we have

pret(s) A 4> =£> pret(xp).

Combining with 4> hP pret(s), the target sequent holds

$ \-P pret(i’)

• Rule 32 is soimd. The proof depends on the Lemma 5.4.1, pret(s') A =>•

pret(s' A suCf(4>)) . And from s' A suct($) hP rp we can infer that

p ress ' A suct(4>)) hP -pre^xp).

Then we have

press') A 4> => pret(xp).

Combining with s h P press'), the target sequent holds

4>, s \-P pret(xp)

• The soundness of rule []2 can be reasoned as follows. From s hp pre(s', A)

we have post(s, A) \-P s', which together with post(4>, A), s' \~P xp let us

get post(4>, A) A post(s, A) \~P ip. We then have the following sequent

hold,

pre(post(4>, A) A post(s, A), A) \-P xp[A\.

Since pre operation can distribute over conjunction, we get,

pre(post(4>, A), A) A pre(post(s, A), A) \-P ip[A\.

Finally we have,

$ A s \-p xp[A\.

55

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

• Rule LEA F is used to generate the initial splitting constrains. When

$ bp ip is a tautology, the weakest splitting s is t t ; when $ \~P ip is a

contradiction, the weakest s is ff; otherwise we can simply set s as <p,

note that is a predicate-closed formula. Then s is propagated back to

enable the computation of previous splitting constraints.

■

In general, the proof rules will not be complete for arbitrary paramet

ric model-checking problem. However, when the PES is generated from a

(parametric) timed automaton and a (parametric) timed mu-calculus, and all

parameters take values from finite sets, the completeness does hold. The proof

follows from the finiteness of the number of different regions in the systems [3]

and an argument for fixpoint approximation similar to [64, 69).

5.5 Im plem entation

We have implemented a prototype, which we call CWB-RT (Concurrency

Workbench - Real Time), of the above-mentioned algorithm. For the non-

parametric version of the algorithm, we implemented the difference bound ma

trices (DBMs) [50] to represent state predicates; while for the parametric ver

sion, we implemented the parametric difference bound matrices (PDBMs) [6 6]

package. C++ was used as the implementation language.

Difference Bound Matrix Given a parameter valuation, clock zone can

be efficiently represented using matrix. Suppose the PES contains m clocks

X \ , . . . , x m, then a clock zone can be encoded as a (m + 1) x (m + 1) square

matrix M whose indices ranging from 0 to m and whose elements belong to

{{<, <} x Z} U {oo}. For each i, the entry Mq, encodes the lower bound of

the clock Xi, while the entry Mi0 specifies the upper bound of the clock x t.

56

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

The element Mitj , for 0 < i , j < m, encodes the constraint x, — x3 < c if

(<,c) is the entry and Xi — Xj < c if (< c) is the entry. If the entry for Mitj

is oo then no boimd is specified for the difference of x, — xr Bounds can be

ordered naturally as follows. Let {< ,<} and < be strictly less than <,

(^i d) < (^ ' ,d ') iff d < d! or d = d1 and The semantics of a DBM M,

written as [Mj, is defined as the set of clock valuations that satisfy the clock

zone represented by the matrix. We call M is satisfiable if [M\ is nonempty.

Exam ple 5.5.1 Considering the clock zone

(1 < Xi) A (x2 — Xi < 0) A (xi - x 2 < 1) A (x2 < 2)

which is represented by two matrix in Figure 13.

Matrix M' is obtained from matrix M by tightening all the constraints.

Such a tightening can be computed by the Floyd-Warshall algorithm [1], Its

time complexity is 0 (m3), where m is the number of clocks. Matrix like

M 1 with tightest possible bounds are called canonical. Two canonical matrix

M, M ' represent the same constraint iff Mi7 = Af/- for all 0 < i, j < m. W hat’s

more, if Mi3 < M[2 for all 0 < i, j < m, we can conclude that the two zones

M C M'.

Since it is expensive to compute the canonical form of a matrix, it is desir

able to make frequently used operations over DBM preserve its canonicity.

• The em ptiness(M) operation is used to detect consistency of a DBM,

i.e. to test whether M is satisfiable. The most efficient way to determine

emptiness is to detect whether there exists a clock difference whose upper

bound has a smaller value than the lower bound in the canonical form.

• The conjunction(M , M') of two clock zone M, M ' can be computed by

(M A M')ij = min(Mij, M[-), for all 0 < i, j < m.

57

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

1 2 X

M Xo X\ x2
x0 (< , 0) K - i) 00

X\ 00 (< . o) (<, 1)
x 2 (<) 2) (< , o) (< o)

M' Xo X\ x 2
Xo (< ,0) (< , - !) (< ,0)
X\ (<) 3) (< ,0) (< , 1)
x2 (< ,2) « , 0) (< 0)

Figure 13: Representation of a clock zone

The suct(4>) operation preserves the canonical form. This is because

clock difference remains the same as time elapse, lower bounds do not

change either, while upper bounds have to be pushed to infinity. Thus

for a canonical representation of matrix M, suct(M) is computed by

setting the upper bound on each individual clock to oo.

The pret((f)) can be computed by setting all the lower bounds on individ

ual clocks to (<, 0). However, due to the constraints on clock difference,

this operation may not preserve the canonicity. An 0 (m2) algorithm [21]

58

R ep ro d u ced with p erm iss io n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

exists to compute the canonical form from the intermediate matrix.

• The reset (A4, := 0) operation is computed by setting all Mi0 and Moi

to (<, 0) and removing all other bounds on x t.

• The preset(M, Xi := 0) operation computes the weakest precondition

of M with respect to the clock reset. It removes all constraints on clock

Xi and sets Moi as (< 0). However the result may not in its canonical

form.

• The zone difference M — M ' is computed by successively slicing off

parts of M that do not lie in M ' [4],

• The disjunction of two clock zone M , M ' is not necessarily a DBM.

That is, the disjunction of two constraints may not be convex.

Parametric Difference Bound Matrices PDBMs extends DBMs with

linear parameter terms as matrix entries. That is, the entry M i j is now a

pair ({< ,< } , £), where £ is a linear term defined over constants and parameter

variables. Given a parameter valuation u, a PDBM becomes a DBM, whose

semantics is written as 1MJW. A constrained PDBM is a pair ($,M), where

$ is a set of constraints over parameter variables, and M is a PDBM. The se

mantics of a constrained PDBM [($, M) \ = A constrained PDBM

(4>, M) is satisfiable if [($, M) \ is nonempty.

Here are some basic operations over constrained PDBMs [6 6].

1 . Adding a guard. In case of DBM, adding a guard g : Xi — Xj ^ d to a

zone M is a simple operation, i.e. to determine whether (<, d) < M X] and

update the bound, written as M [3], and compute the canonical form if so.

While in the parametric case, adding a guard to a constrained PDBMs

($, M) may result in a set of constrained PDBMs.

59

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Let g : Xi — Xj < t be the adding guard and i / j .

Define the boolean operation => as over relation symbols < and < as

what follows. (<=><) =<; (<=><) = < ; (<=><) = < ; (<=>■<) = < . This

operation is used to check whether the bound imposed by the guard is

weaker than the corresponding bound in the PDBM.

The resulted set M of constrained PDBMs are computed as follows,

checking between these linear terms.

2 . C anonicalization In the parameter case, the canonical form of a con

strained PDBM can also be computed with Floyd-Warshall algorithm

symbolically.

BDD-Iike d a ta s tru c tu re BDD-like data structures help to improve the

performance of real-time verification in both space and time complexities with

intensive data-sharing in the representation of state space [20, 83, 105, 106].

CRD(Clock-Restriction Diagram) [105] is one of most advanced BDD-like

data structures for the verification of timed automata. CRD can be seen as a

decision diagram for zone set membership. Each evaluation variable in a CRD

is of form x, — xr and the values of such variable are {{<,<} x Z }u{oo},

just like the entry for DBM.

By fixing an order of the evaluation variables, a CRD can be constructed

in a similar way as BDD. In CRDs, a missing evaluation variable, e.g. Xi — Xj,

is interpreted as Xi — Xj < oo.

if C h (U j =► 0
{{*,M \g\)} if
{($ U (Uj =$> t), M), ($ U -i(tij => t), M\g\)} otherwise

We took the Omega Library [8 6] as decision procedure for inclusion

60

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

(<,oo)

TRUE

Figure 14: Example for CRD with upper bounds

Exam ple 5.5.2 Considering the CRD illustrated in Figure 14, which repre

sents the union of two zones, {0 — x\ < —2, x2 — X\ < —3, Xi — x3 < 5} and

{0 — x2 < 3, x-i — x3 < 5}.

HRD(Hybrid-Restriction Diagram) [106] is the extension of CRD for the

parametric analysis of linear hybrid systems. In HRDs, evaluation variables

are linear terms of the form which together with the outgoing arc

label (r<, c) constitute the linear constraint defined over clock variables and

parameter variables.

With a canonical form for CRD/HRD and basic set-oriented manipulations

on CRDs/HRDs, verification can be performed efficiently. As BDD-like data

structures, the efficiency of CRD/HRD-based fixpoint computation is strongly

dependent on the ordering of evaluation variables.

61

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Implementation The algorithm uses a depth-first search technique with

caching. The proof rules in Figure 9 are used to generate sequents needed to

be proved next in order for the goal sequent to be true. The cache contains

sequents that have either been proved or disproved, or are currently assumed

to be true. When a sequent is generated, the cache is first checked to see if it is

implied by something in the cache; if this is the case, then no more searching

is necessary for this sequent. If the sequent is not in the cache, it is added

into the cache, and rules are then recursively applied to it. The precise details

of cache management are similar to those for on-the-fly propositional model

checkers [11, 25], so we omit further discussion here. The pseudo-code for the

algorithm is presented in Table 1 and continued in Table 2

A sequent is defined as a tuple (split, E, Ihs, rhs, sub, value),where Ihs is a

zone; split indicates whether splitting constraints are necessary, which are

stored in a zone set E; rhs is a predicate calculus expression, whose kind may

be PREDICATE, AND, OR, FORALL, EXISTS, CONSTRAINT, BOOL, ATOMIC,

sublist, reset according to the definition of predicate calculus; sub is a

mapping function. The procedure proof takes split, Ihs, rhs, sub as input

parameters and returns the value of the sequent, where splitting constraints

are stored as a list of PDBMs in E. The algorithm starts from PROOF (false,

0,c, X , sub), where c is the zone that represents x := 0, X is the interested

predicate and sub assigns initial value to each control variable.

Sequents are cached to share computations. The value of a cached sequent

can be looked up by tabled in line (1). Its value my also need to be updated

due to dependent information later by update-tabled .sequents. Dependent

relationship between predicate variables can be defined as dependent trees in

the same way as [40).

Zones operation fl(E i,E 2) takes two zone sets and outputs a zone set E

guided by p E \ J Tii A p E Similarly operation U (Ei,E2)

62

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Table 1: Pseudo-code for local real-time model-checking algorithm

bool PROOF(bool split, zones &£, zone &lhs, ExprNode &rhs, Subst &sub)
(1) if tabled(splifc, £ , Ihs, rhs, sub), r e t u r n theAabledjvalue-,
(2) bool retval ;
(3) SWlTCH(rhs.kind())
(4) CASE PREDICATE:
(5) if o leaf is determined, r e t u r n the Aeaf.value-,
(6) get the ExprNode e that defines the predicate variable of rhs;
(7) retval = PROOF (split, £ , Ihs, e, sub);
(8) CASE AND:
(9) retval = p r o o f (split, £ i , Ihs, rhs.ie/itQ, sub)

A p r o o f (split, £ 2, Ihs, rhs.righfc(), sub);
(10) if (split) £ = £ i n s 2;
(11) CASE OR:
(12) IF (split) retval = p r o o f (split, £ i, Ihs, rhs.feft(), sub)

V p r o o f (split, £ 2, Ihs, rhs.right(), sub);
(13) £ = £ 1 U £ 2;
(14) ELSE
(15) if (retval = PROOF(true , £ 1 , Ihs, rhs.ieft(), sub))
(16) generate zones £ 2 = (£ 1 fl Ihs);
(17) FOR each 2 6 £ 2
(18) retval = retval A PROOF(/alse , 0, z, rhs.right(), sub);
(19) ELSE retval = PROOF (false , £ , Ihs, rhs.rigbt(), sub);
(20) CASE FORALL:
(21) if (split) retval = PROOF (split, £ ', suCr(lhs), rhs.expr(), sub)

A forallcond(£,£',lhs);
(22) e l s e retval = p r o o f (split, £ , sucT(lhs), rhs.expr(), sub);
(23) CASE EXISTS:
(24) retval = p r o o f (true , £ ', sucT(lhs), rhs.exprQ, sub)

A existcond(spiit, £, £', Ihs);

63

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

Table 2: Pseudo-code for local real-time model-checking algorithm (cont)

(25) CASE CONSTRAINT:
(26) IF (split)
(27) IF (Ihs < rhs.zone()) ^ = UNIVERSE; retval = true ;
(28) e ls e if (Ihs n rhs.zoneQ = = 0) E = em pty; retval = false ;
(29) ELSE E = (rhs.zone()}; retval = true ;
(30) e ls e IF (Ihs < rhs.zone()) retval = true ;
(31) ELSE retval = false ;
(32) CASE BOOL: retval = rhs. bool();
(33) CASE ATOMIC: retval = (sub(rhs.atomic()) = = rhs.intvaf());
(34) CASE SUBLIST:

retval = PROOF(spiit, E, Ihs, rhs.expr(), rhs.sub()[sub]);
(35) CASE RESET:
(36) if (split) retval =

PROOF(split, E', reset(lhs, rhs.dodcSet), rhs.exprO, sub);
(37) E = preset(E ', rhs.clockSet);
(38) else retval =

proof (split, E, reset(lhs,rhs.c/ockSet), rhs.expr(), sub);

(39) update_tabled_sequents(sp/it, E, Ihs, rhs, sub, r e tv a l);
(40) return retval ;

64

R ep ro d u ced with p erm iss io n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

defines a zone set £ by p e V £ iff p G V Si V p € \ / S 2; complement of

a zone set p 6 V ^ iff P t V We sometime abuse these notations by

providing a zone instead of a zone set as an input. Zone operation < , 22)

iff p 6 Z\ —> p 6 *2 •

We use function forallcond(£, S', Ihs) to determine the weakest £ given

by the condition sucT(lhs D £) = sucT(lhs) D S'; To do this, we can first test

whether suc,-(lhs) fl S ' has a ray to positive infinity and then define S in the

way as 2 € S iff 2 € S'A(zfllhs) / 0; While existcond(spfit, S, S ', Ihs) defines

S = pre(S') when split is true. If split is false, it returns false when there is

any p 6 Ihs and p £ \J pre(S'))

Operation reset(^, clockSet) computes the strongest post-condition with

respect to the reset clocks; while p re se t(2 , clockSet) gives the weakest pre

condition.

All other operations over the class ExprN ode, like left(), right(), exprQ,

sub(), atomicQ, intvalQ, boolQ, zoneQ, clockSet, works in a straight way.

In fine (34), sub()[sub] is the updating operation over mapping functions.

universe represents the universe constraint, empty the empty constraint.

To identify leaves, a stack is useful to cache sequents whose rhs is predi

cate. Note that leaves can be identified even with unknown splittings.

5.6 E xperim ental R esu lts for R eal-T im e

To assess the performance of the non-parametric algorithm, we ran CWB-

RT on several examples taken from the literature and compared the results

with those from the most recent available versions of Kronos [109] (2.5i.2),

UPPAAL [19] (3.4.7, with both breadth-first (-b) and depth-first (-d) search

options) and RED [105] (5.3, with both forward and backward analysis). The

65

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

experimental platform used was an Intel Pentium IV 2.8GHz with 2GB mem

ory running Linux. The systems are listed below, together with properties

(a) that should hold of correct implementations and properties (b) containing

a bug that should not hold of correct implementations. The “formula bugs”

include both logical errors and errors that could result from typographical

mistakes (i.e. typing “2” rather than “1” by accident).

1. Fischer’s timed Mutual Exclusion (MUX) [4, 105]. There are n processes

trying to access a critical section. Initially each process is idle, but at any

time it may begin executing the protocol provided the value of a global

variable p is 0. It then delays for up to Ag seconds before assigning

its identifier to p. It may enter the critical section within Ac seconds

provided p still equal to its identifier. It reinitializes p to 0 upon leaving

the critical section. When A B > A c two processes may enter the critical

section at the same time. The constants we use are A B = 10, Ac = 19.

We verify that (a), at any time, no more than one process is in its critical

section, (b). at most four processes could be in their waiting states at

the same time.

2. FDDI token-ring mutual exclusion protocol [47, 105]. A network is con

sisted of n identical stations and a ring, where the stations can com

municate by synchronous messages with high priority and asynchronous

messages with low priority. For each station, two clocks are used. The

biggest timing constant used is 50 * n + 20, where n is the number of

stations. We want to verify that (a), at any moment, at most one station

is holding the token, (b). station i is in its asynchronous mode at time

20 * i of the network clock.

3. Scheduling problem of real-time operating system (PATHOS) [15, 105].

Each process runs with a distinct priority in a period equal to the number

66

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

of processes. Scheduling policy must follow priority among processes.

The property verified is that (a), no deadlines will be missed, (b). no

new deadlines (2 units ahead of time) will be missed.

4. Safeness of a leader-election algorithm (LEADER) [105]. Each process

has a unique identifier greater than 0 and a control variable p which

records its parent and is initialized to 0. A process with p = 0 may

broadcast its request to be adopted by a parent. Another process with

p = 0 may respond. Then the process with smaller identifier will become

the parent of the other one. The biggest timing constant used is 2. We

check that (a) .at any time there is at least one process who is a child

to no other processes, (b).at any time there is at least three processes,

each of which is a child to no other processes.

5. Bounded liveness of a leader-election algorithm (LBOUND) [105]. We

verify that (a), after 2 \log2m\ time units, where m is the number of

processes, the algorithm will terminate, (b). after 3 time units, the

algorithm will terminate.

6. CSMA/CD benchmark [105, 109]. We check that (a), at any moment,

at most one process is in the transmission mode for no less than 52 time

units, (b). a third process could retry to send while two are already in

the transmission status.

One of the motivations for on-the-fly model checking is that bugs can be

caught much more quickly than with global approaches since computation can

be short-circuited when errors are found. We tested this hypothesis in two

ways. First, for each buggy formula (b) and correct system specification, we

collected comparative performance data in Table 3 for the model checkers in

question. These figures indicate that CWB-RT performs much better than the

other tools in this case.

67

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 3: Non-parametric real-time performance data when correct systems fail buggy (b) properties.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU
time in seconds, “O/M” means “out-of-memory”.

Example
CWB-RT

non-parametric
Kronos

2.5i.2
UPPAAL
3.4.7 (-b)

UPPAAL
3.4.7 (-d)

RED 5.3
(forward)

RED 5.3
(backward)

MUX-20-b 7.83s O/M O/M 24.55s O/M O/M
MUX-40-b 372.81s O/M O/M 1139.57s O/M O/M
MUX-50-b 2653.00s O/M O/M O/M O/M O/M
FDDI-30-b 0.20s O/M O/M O/M 22.85s 15.96s
FDDI-40-b 0.58s O/M O/M O/M 92.92s 78.57s
FDDI-60-b 2.76s O/M O/M O/M 1788.43s 1053.06s
PATHOS-7-b 10.58s O/M O/M O/M O/M 3582.55s
PATHOS-8-b 48.32s O/M O/M O/M O/M O/M
PATHOS-9-b 212.66s O/M O/M O/M O/M O/M
LEADER-10-b 0.00s O/M O/M O/M 21.32s 264.46s
LEADER-20-b 0.03s O/M O/M O/M O/M O/M
LEADER-120-b 26.50s O/M O/M O/M O/M O/M
LBOUND-lO-b 0.01s O/M O/M O/M O/M O/M
LBOUND-40-b 1.92s O/M O/M O/M O/M O/M
LBOUND-120-b 284.42s O/M O/M O/M O/M O/M
CSMA/CD-20-b 0.02s O/M 6.11s 0.12s O/M O/M
CSMA/CD-40-b 0.15s O/M O/M 2.41s O/M O/M
CSMA/CD-100-b 3.81s O/M O/M 232.32s O/M O/M

www.manaraa.com

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 4: Non-parametric real-time performance data for buggy system specifications and correct (a) properties.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU
time in seconds, “O/M” means “out-of-memory”.

Example
CWB-RT

non-parametric
Kronos

2.5i.2
UPPAAL
3.4.7 (-b)

UPPAAL
3.4.7 (-d)

RED 5.3
(forward)

RED 5.3
(backward)

MUX-14-e 1.32s O/M O/M O/M O/M O/M
MUX-16-e 13.00s O/M O/M O/M O/M O/M
MUX-18-e 257.02s O/M O/M O/M O/M O/M
FDDI-30-e 0.24s O/M 1.81s 2.54s 67.09s 14.15s
FDDI-40-e 0.70s O/M 6.09s 9.39s 351.09s 39.37s
FDDI-60-e 3.16s O/M 44.43s 63.26s 7066.18s 308.60s
PATHOS-5-e 0.51s O/M 1.02s 109.56s 215.04s 24.33s
PATHOS-6-e 19.71s O/M 354.40s O/M O/M 250.64s
PATHOS-7-e 2283.13s O/M O/M O/M O/M O/M
LEADER-60-e 0.02s O/M 21.18s 21.04s O/M O/M
LEADER-70-e 0.03s O/M O/M O/M O/M O/M
LEADER-150-e 0.26s O/M O/M O/M O/M O/M
LBOUND-lO-e 0.00s O/M O/M 62.33s O/M O/M
LBOUND-20-e 0.02s O/M O/M O/M O/M O/M
LBOUND-120-e 1.16s O/M O/M O/M O/M O/M
CSMA/CD-10-e 65.19s O/M O/M O/M 2057.94s 2389.87s
CSMA/CD-ll-e 200.50s O/M O/M O/M O/M O/M
CSMA/CD-12-e 670.95s O/M O/M O/M O/M O/M

www.manaraa.com

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 5: Non-parametric real-time performance data for correct systems and (a) properties.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU
time in seconds, “O/M ” means “out-of-memory” .

Example
CWB-RT

non-parametric
Kronos

2.5i.2
UPPAAL
3.4.7 (-b)

UPPAAL
3.4.7 (-d)

RED 5.3
(forward)

RED 5.3
(backward)

MUX-5-a 0.23s 0.48s 0.77s 4.12s 4.67s 1.36s
MUX-6-a 4.03s O/M 68.87s 927.79s 66.89s 3.92s
MUX-7-a 115.53s O/M O/M O/M 778.48s 10.32s
FDDI-20-a 0.21s O/M O/M O/M 2.02s 2.25s
FDDI-40-a 2.29s O/M O/M O/M 16.91s 24.39s
FDDI-60-a 11.03s O/M O/M O/M 60.07s 85.99s
PATHOS-4-a 4.19s O/M 0.21s 0.14s 10.15s 6.07s
PATHOS-5-a 2824.96s O/M 2.14s 55.27s 353.98s 360.06s
PATHOS-6-a O/M O/M O/M O/M 12053.26s 31190.21s
LEADER-6-a 0.24s O/M 1.32s 1.53s 0.43s 1.28s
LEADER-7-a 12.74s O/M 136.29s 142.02s 1.18s 3.73s
LEADER-8-a 1888.35s O/M O/M O/M 2.97s 9.80s
LBOUND-6-a 0.35s O/M 2.53s 1.64s 67.70s 33.17s
LBOUND-7-a 15.22s O/M 145.86s 153.59s 453.58s 193.68s
LBOUND-8-a 2431.69s O/M O/M O/M 2933.81s 892.97s
CSMA/CD-6-a 3.89s 0.32s 2.55s 5.15s 709.12s 0.52s
CSMA/CD-7-a 56.62s O/M 218.81s 182.49s 12109.23s 1.26s
CSMA/CD-8-a 1584.76s O/M O/M O/M O/M 3.15s

www.manaraa.com

We then studied situations in which correct formulas were used but buggy

system specifications given. The data we obtained is given in Table 4, where

the error for MUX originates in a misassignment to the global lock with the

difference between the number of processes and the process identifier; the

destination of the transition from the asynchronous state is misset to itself

for the first station in FDDI; the error in PATHOS involves an omitted clock

reset, which would be a typical programming error one might observe; and the

error in CSMA/CD is caused by missing a collision signal, thus it leads to an

incomplete system specification; the error in LBOUND is caused by setting

the parent to NULL in the requester-responder pair, and to the identifier

complemented by the number of processes in LEADER.

Again, the figures show that CWB-RT significantly outperforms the other

tools on these case studies. We conjecture that CWB-RT’s superior perfor

mance in this and the preceding case is due to the combined forward / back

ward analysis of our algorithm. The logical infrastructure of our algorithm is

useful to detect errors quickly while most of other tools are devoted to compute

a fixpoint before it could find an error.

An often-mentioned criticism of on-the-fly model checking is that when

system specifications and formulas are both correct, these algorithms perform

very poorly. To test the validity of this statement, we ran CWB-RT on all (a)

properties for correct versions of the case studies. The performance figures in

Table 5 are for the correct versions of the case studies against (a) properties.

Specifically, it can be seen that CWB-RT generally outperforms Kronos and

is often better, though sometimes worse, than UPPAAL3.4.7. RED5.3 gen

erally outperforms CWB-RT on these examples, although it should be noted

that while Kronos [109] was implemented with DBMs, as CWB-RT is, UP

PAAL [19] use CDDs and RED5.3 CRDs [105]. We conjecture that CWB-RT

would see considerable performance improvement if we used CDDs / CRDs

71

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

in place of DBMs. Also, CWB-RT’s competitiveness does suggest that our

proof-search strategy, which combines forward (proof search) and backward

(sequent caching) analysis, offers performance improvements over the “pure

forward” or “pure backward” strategies favored by these tools.

5.7 E xperim ental R esults for Param etric

R eal-T im e

To assess the performance of the parametric CWB-RT, we ran it on several

examples taken from the literature and compared the results with those from

the most recent available versions of TReX-1.4 [13], HyTech-1.04f [63] and

RED5.3 [106] with both forward and backward analysis. (All these tools solve

the constraint-synthesis version of the problem: they compute the most gen

eral constraints on parameters that guarantee the property in question will

hold. It is easy to use these results to solve the universal problem, however.)

The tool TReX [13] can deal with non-linear parameter constraints. It was

implemented with PDBMs and also supports the Omega Library as an exter

nal decision procedure. Both HyTech [63] and RED [106] are tools for linear

hybrid automata, which are more general than parametric timed automata.

While HyTech-1.04f was implemented with polyhedra as its data structures,

RED5.3 was released with HRDs (Hybrid-Restriction Diagrams), a BDD-like

data structure, which is more compact and efficient than PDBMs and poly

hedra, see [106] for the experimental results. Due to the absence of publicly

available implementations, other constraint-synthesis tools that are capable

of parametric analysis, namely LPMC [97] and the extension of UPPAAL for

linear parametric model checking [6 6], are not considered here; see [44] for the

performance reports.

The experimental platform used was an Intel Pentium IV 2.8GHz with

72

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

2GB memory running Linux. The systems are listed below together with

different constraints over parameters. Note that for any parameter valuation

that satisfies condition (a), the model-checking problem is unsuccessful, while

successful under condition (b); condition (c) is the mixed case, i.e. some

parameter valuations make the problem successful, others unsuccessful.

1. Fischer’s timed Mutual Exclusion (MUX) [4, 106]. We verify that at

any time, no more than one process is in its critical section, when (a).

Ab > = Ac ; (b). A b < Ac ; (c). A s > 0 , Ac > 0 .

2. Nuclear reactor controller (REACTOR) [6 , 106]. The goal of the system

is to maintain the reactor temperature between a minimal threshold L

and a maximal threshold U by inserting control rods. A rod must stay

outside for at least T time units after it is removed. We verify that

whenever the temperature reaches U, one of the rods can be put in, with

condition (a). T > = 16 + (m — 1) * 21; (b). T < 16 + (m — 1) * 21; (c).

T > = (m — 1) * 21, where m is the number of rods in the system.

3. Generic Railroad Crossing (GRC). We use the real-time version of the

protocol adapted from [106]. A system operates a gate at a railroad

crossing. The railroad crossing / lies in a region of interest R. A set of

trains travel through R on multiple tracks in both directions. A constant

parameter 6 is used to determine the controller actions. The safety

property is to ensure the system will not enter an unsafe state where a

train is in the crossing but the crossing gate is not down. We check with

(a). 6 > 2 0 ; (b). 6 <= 2 0 ; (c). 6 > 1 0 .

4. CSMA/CD benchmark [106, 109]. This is the ethemet bus arbitration

protocol with the idea of collision-and-retry. A typical worst case round

trip propagation is 6 time units, and it need a time units to detect a

collision. One safety property requires that at any moment, at most one

73

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

process is in the transmission mode for no less than time units. We

check (a). S <= cr; (b). 5 > 52, a < = 26; (c) 6 > 52, a > 0.

We tested the fast error-detection capability of the parametric CWB-RT

with buggy condition (a) and (c) over parameters, we collected comparative

performance data for the model checkers in question. These figures in Table 6

and Table 7 indicate that CWB-RT significantly outperforms the other tools

in this case. Again, we conjecture that CWB-RT’s superior performance in

this case is due to the combined forward / backward analysis of our algorithm.

The logical infrastructure of our algorithm is useful to detect errors quickly

while most of other tools are devoted to compute a fixpoint before it could

find an error.

The performance figures collected in Table 8 are from all (b) properties of

these case studies. Specifically, it can be seen that CWB-RT generally outper

forms TReX-1.4 and HyTech- 1.04f. RED-5.3 generally outperforms CWB-RT

on these examples, although it should be noted that while TReX [109] was

implemented with PDBMs, as CWB-RT is, HyTech [19] use polyhedra and

RED5.3 HRDs [106]. Since data structures have been one of the key challenges

for efficient real-time model checking [105, 106], we conjecture that CWB-RT

would see considerable performance improvement if we used a BDD-like data

structure in place of PDBMs (our prototype uses PDBMs because of the ease

of the implementation). Also, CWB-RT’s competitiveness does suggest that

our proof-search strategy, which combines forward (proof search) and back

ward (sequent caching) analysis, offers performance improvements over the

“pure forward” or “pure backward” strategies favored by these tools.

74

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 6 : Parametric real-time performance data with (a) conditions.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU
time in seconds, “O/M” means “out-of-memory”, or “does not finish in two hours” . “N/A” means “not available”
(especially for TReX-1.4, a segmentation fault occurs).

CWB-RT
parametric

TReX1.4 HyTech 1.04f RED5.3
fw bw fw bw fw bw

GRC-5-a 0.04s O/M O/M O/M O/M 334.26s O/M
GRC-6 -a 0.07s O/M O/M O/M O/M 5403.17s O/M
GRC-10-a 0.34s O/M O/M O/M O/M O/M O/M
GRC-40-a 125.44s O/M O/M O/M O/M O/M O/M
MUX-4-a 0.06s O/M N/A O/M 56.09s 2.90s 3.22s
MUX-7-a 0.13s O/M N/A O/M O/M 363.76s 1190.26s
MUX-10-a 0 .2 0 s O/M N/A O/M O/M O/M O/M
MUX-70-a 6.69s O/M N/A O/M O/M O/M O/M
CSMACD-6 -a 0 .0 1 s O/M O/M 1354.50s O/M 4.42s 48.68s
CSMACD-7-a 0 .0 1 s O/M O/M O/M O/M 33.35s O/M
CSMACD-10-a 0.03s O/M O/M O/M O/M O/M O/M
CSMACD-70-a 4.26s O/M O/M O/M O/M O/M O/M
REACTOR-5-a 0.07s O/M O/M 1.83s 3.14s 92.05s 15.07s
REACTOR-6 -a 0 .1 1 s O/M O/M 16.79s 49.47s O/M 412.45s
REACTOR-7-a 0.19s O/M O/M O/M O/M O/M O/M
REACTOR-40-a 145.95s O/M O/M O/M O/M O/M O/M

www.manaraa.com

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 7: Parametric real-time performance data with (c) conditions.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU
time in seconds, “O/M ” means “out-of-memory”, or “does not finish in two hours” . “N/A” means “not available”
(especially for TReX-1.4, a segmentation fault occurs).

CWB-RT
parametric

TReX1.4 HyTech 1.04 f RED5.3
fw bw fw bw fw bw

GRC-5-c 0.05s O/M O/M O/M O/M 338.45s O/M
GRC-6 -c 0.07s O/M O/M O/M O/M 5598.72s O/M
GRC-10-c 0.34s O/M O/M O/M O/M O/M O/M
GRC-40-c 124.51s O/M O/M O/M O/M O/M O/M
MUX-4-c 0.08s O/M N/A O/M 56.78s 23.61s 3.36s
MUX-5-c 0.13s O/M N/A O/M O/M 818.26s 29.22s
MUX-10-c 0.26s O/M N/A O/M O/M O/M O/M
MUX-70-c 12.26s O/M N/A O/M O/M O/M O/M
CSMACD-4-c 0 .0 1 s O/M O/M 4.17s O/M 24.07s 2.05s
CSMACD-6 -c 0 .0 1 s O/M O/M 775.62s O/M 3206.95s 36.88s
CSMACD-10-c 0 .0 1 s O/M O/M O/M O/M O/M O/M
CSMACD-70-c 2 .2 0 s O/M O/M O/M O/M O/M O/M
REACTOR-5-c 0.09s O/M O/M 4.32s 3.68s 207.31s 18.68s
REACTOR-6 -c 0.14s O/M O/M 68.92s 41.04s O/M 389.22s
REACTOR-7-c 0.19s O/M O/M O/M O/M O/M O/M
REACTOR-40-c 144.91s O/M O/M O/M O/M O/M O/M

www.manaraa.com

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 8 : Parametric real-time performance data with (b) conditions.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU
time in seconds, “O/M ” means “out-of-memory” , or “does not finish in two hours” . “N/A” means “not available”
(especially for TReX-1.4, a segmentation fault occurs).

CWB-RT
parametric

TReX1.4 HyTech 1.04f RED5.3
fw bw fw bw fw bw

GRC-2-b 2.24s 0.85s 0.50s 0.58s 1.35s 1.05s 0.31s
GRC-3-b 27.25s O/M O/M 22.75s 301.71s 2.75s 2.96s
GRC-4-b 271.52s O/M O/M O/M O/M 28.56s 5.47s
GRC-5-b 2263.06s O/M O/M O/M O/M 260.12s 54.66s
MUX-2-b 0 .1 0 s 0.08s N/A 0 .1 0 s 0.09s 0 .1 0 s 0.07s
MUX-3-b 2.72s 4.40s N/A 2.80s 2 .8 6 s 1 .0 2 s 0.45s
MUX-4-b 66.79s 648.32s N/A 217.85s 56.20s 23.79s 3.12s
MUX-5-b 2546.32s O/M N/A O/M O/M 865.44s 9.82s
CSMACD-2-b 0.59s O/M O/M 0.07s O/M 0.18s 0.18s
CSMACD-3-b 15.94s O/M O/M 0.39s O/M 1.76s 1.76s
CSMACD-4-b 310.70s O/M O/M 4.02s O/M 17.77s 2.07s
CSMACD-5-b 4019.83s O/M O/M 37.35s O/M 212.25s 8.75s
REACTOR-6 -b 1.45s O/M O/M O/M 41.97s O/M 331.70s
REACTOR-lO-b 6.63s O/M O/M O/M O/M O/M O/M
REACTOR-20-b 53.82s O/M O/M O/M O/M O/M O/M
REACTOR-30-b 186.99s O/M O/M O/M O/M O/M O/M

www.manaraa.com

Chapter 6

Model Checking Presburger

Systems with PESs

This section introduces a proof-based symbolic model-checking technique for

Presburger systems. This technique will also serve as the basis of our query-

checking approach.

6.1 Presburger System s

We begin by introducing some terminology and notation. Throughout let

(x> y , . . . e)X be a set of data variables, (a, b,. . . e)Z be the set of integers,

and (t e)II be the set of linear terms of form of Also fix a set of

(uninterpreted) actions (a, /? ,... €)^lct.

Presburger systems may be thought of as state machines that, in the course

of their execution, may modify integer-valued data variables. The tests and

modifications to these variables that these state machines may engage in must

take the form of so-called Presburger formulas, which represent a restricted

subset of logical formulas over integer arithmetic. In this section, we review the

definition of Presburger formulas and introduce Presburger systems formally.

78

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

P resb u rg er form ulas Presburger formulas are generated by the following

BNF grammar, where x 6 X and t \ , t 2 € n.

<t> '■'■= < t2 I <p A <P I ->(/) I 3X.(f)

We use $ to represent the set of Presburger formulas in what follows.

Semantically, Presburger formulas are interpreted with respect to data

states p € Zx mapping data variables to integers. We write p |= 4> when

p makes <f> true; the definition is standard and is omitted. Formula 0 is called

satisfiable if there exists p such that p \= 4>.

The satisfiability of Presburger formulas is decidable, although the worst-

case time bound is double-exponential in the length of the formula. Efficient

procedures [71, 8 6] do exist to solve the satisfiability problems that arise most

often in practice, which typically posses a small number of constraints and do

not contain multiple levels of alternating quantifiers [32],

Finally, a Presburger formula (j> defines a set |0] of data states in the

obvious manner: [<t>\ = {p \ p \= <t>}■

P resb u rg er system s Presburger systems may be seen as symbolic state

machines, with a finite sets of control locations and Presburger formulas and

state transformations used to show how the data variables are modified as

control locations are updated.

D efinition 6.1.1 A Presburger system (PS) is a tuple {S, R, Si, InitfZ),

where S is a finite set of control locations; R C S x Q x A x A ct x S is

a finite set of transitions; Si C S are the initial locations; and ImtC e 3* is

the initial condition.

Intuitively, Si contains the possible starting locations and InitC the initial

conditions on data variables. Based on the current control location and state

of the data variables, transitions whose $ G $ components are true may fire,

79

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

with data variables being updated in a manner consistent with the transition’s

state-transformation formulas. These notions are made precise by interpreting

PSs semantically using concrete transition systems.

Given a PS G = (S, R, Sj, InitC), CTS Cg = (£, V, —>C! £ /) is given as
follows.

1. E C S x Z 1

2. V((s,p)) = p

3. (s, p) (s', pf), iff there is (s , <f>, A, a, s') e R, with p |= <f> and (p, p') \= A

4. £ / = {(si,p) | Si e 5 /,p \= Inite}

As an example, we define the PS G = (S, R, 5/, InitC) for the system in

Figure 1 as follows, where r is a special internal action.

- S = {s0 ,si}

{s0, x < 5; x' = x + 1; r; So}

{ s 0, y < 8;t/ = j /+ 1;t;s0}

_ R = y { s o , y < 5;;r;s i}
{si, x > 2 ; x' = x — 1 ; r; s i}

{su y > 3\y' = y — l ;r ;s i}

{«i,x > 2 ; ; r ; s 0}

- 5 / = {s0}

- InitC = (x = 2 A y ~ 3)

6.2 T he Presburger M odal M u-C alculus

Temporal-logic query checking requires a “base logic” in which to write system

requirements. In query-checking work, variants of the temporal logic CTL [36]

80

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

are typically used for this purpose. In this work, we consider a different, lower-

level, but more expressive logic that allows the definition of recursive formulas.

We call this logic the Presburger Modal Mu-Calculus.

Our formulas are defined using MESs, which consist of blocks of equations

of the form X = ip, where X e X is a formula variable and ip is a formula

defined by the following grammar.

ip (ps | i ’ V ip | ip A ip | {a)ip \ \a\ip \ X

In the above, <ps is a Presburger formula, and a is an action. Operators (a)

and [a] are called modal operators; these, together with V and A, are standard

from the prepositional modal mu-calculus [72],

The semantics of the Presburger modal formulas is given with respect to

a CTS C = (E, V, —>c, E/), and takes the form of a relation a \=c,e ip, which,

given an environment 9 : X 2E mapping formula variables to sets of states,

determines whether or not CTS state a satisfies ip. This relation may be given

as follows (obvious cases omitted).

<y t=c,e <P> iff V(cr) |= <p,
a |=c,e X iff a € 9(X)

a 1=c,g (ot)ip iff there is o' s.t. a A c a' and a' (=c,e V’

& |= c ,e [<*)ip iff for all o7 s.t. a A c a ', a' (=c,e ip

We define \ ip \c ,e = {<* \ o \= c ,9 V'}- We may now apply the general fixpoint
theory, to define the semantics of MESs.

As a modal mu-calculus, the Presburger MESs are expressive enough to

encode many temporal logics, including CTL. We sometimes use these CTL

operators as shorthands to specify query formulas whenever convenient. For

example, the invariant property AG<p can be defined as A = <p A [t \X , the

reachability formula EF<p : X = 4> V (t)X , where r is a special action that can

81

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

label any transition (because there is no action label in CTL); the bounded

liveness property A<p\Nip : X = <p V (<p A (r]X); and EX</> : (t)4> etc.

6.3 From Presburger M odel Checking to

P E Ss

The Presburger system model-checking problem asks: given PS G, formula-

closed MES M and X e Ihs(M), does G \=m X ? This section shows how to

translate this question into an equivalent one involving PESs.

The translation from an PS G and an MES M to a PES is achieved

by constructing a PES equation for each control location in G and equa

tion in M. Formally, we define a function F that, given an PS G and

formula-closed mu-calculus equation system M, yields a predicate-closed PES

F(G, M). F is applied on a block-by-block basis; that is, F(G , {B \,. . . , Bn)) =

(F(G , B {),. . . , F(G, Bn)). And F(G, B) = F(G, (p, E)) in turn yields a pred

icate equation block of form (p, E') , where for each equation X = ip in E and

control location s in G, there is an equation of form Ys x = F(s, t/>) in E'.

F(s, ip) is defined as follows.

F(s, (p3) = <ps

F(s,il>iVifa) = F(s,4’i) V F{s,ip2)

F(s,ipi A ^ 2) = F(s,4>i) A F(s,ip2)
F(s, X) = Ys<x

F{s,(a)ip) = \/{<p A(F(s',V>)[A]) | (s,0, A, a, s') e R}

F(s, [a\ip) = f\{(p -» (F(«,,V»)[i4]) | <s, 0, A, a , s') e R}

T heorem 6.3.1 Let G = (S, R ,S i, InitS) be an PS, and let M be a closed

modal equation system. Then for any s € S and any X € lhs(M), we have

that [X|G,Af(s) = [F*,x]f(g,m)-

82

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Proof: Proof follows Theory 4.4.3 as a specialization.

6.4 Local M odel Checking

We now customize the “goal-directed” proof system to the Presburger systems

in Figure 15. The proof system establishes when a set of predicate-closed

formulas $ = {<p\ , . . . , (pn} implies a formula ip potentially containing predicate

variables from a PES P. The proof rules operates on sequents of the form:

$ I- P ip, which we shall interpret as the formula / \ 4 > —> ip. The rules follow

the following syntactic conventions: <p,(pi,(p are predicate closed, while ip,ipi

need not be; and $,0 is short-hand for 4> U {</>}. Conclusions axe also written

above subgoals, which are separated by a .

Vi $ hp V’l V 1p2
$ Pp ip i V2

$ hp Ipl V 1p2
$ 1p2

V3
$ h p <p V

$, not(0) l-p V'
V4

$ h p ip V <p

$,not(<£) Pp 4>

A
$ h p ipi A ip2

$ \~P ip 1 ; 4> hp ip2
V

$ i"p i>\ v ip2
<p h p ipi ; 4>, -«p h p ip2

4> hp ip[A\
p O S t($, A) h p ip

<f> h p X
c (x = ^ 6 p) $ h p ip

Figure 15: A local approach for Presburger systems.

83

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Rules Vi — A are familiar from the standard predicate calculus; not function

“drives” negations inside; Intuitively, rule V is used for splitting conditions,

The remaining rules are for the substitution operator and predicate variables.

post(4>, A) = { p / \ p \ = $ and (p, pf) E A } defines the strongest postcondition

of Presburger formulas $ wrt. the state transformation A. These postcondi

tions may also be represented as Presburger formulas.

The rules also share the implicit side condition: they may only be applied

to non-leaf sequents. These are defined in the samw way as Definition 3.5.1.

A proof built using these rules is valid if and only if it is finite, every path

ends in a leaf, and every leaf is successful. The following is true.

T heorem 6.4.1 The proof rules in Figure 15 are sound: i f$ hp ip has a valid

proof then [3> hp ip\P = where P is the PES containing the definitions of

the predicate variables.

Proof: Proof follows Theory 3.5.2. ■

In general, the proof rules will not be complete, although Presburger arith

metic is decidable. This is because proofs of certain sequents may require

infinite-depth trees (i.e. fixpoint computation does not converge in finite

time [45]). To overcome this, conservative approximation techniques and ac

celeration heuristics (e.g. [32]) may be needed to achieve convergence of an

approximate fixpoint computation. On the other hand, if all the data vari

ables are bounded (i.e. take values from a range), then the proof system is

complete. In this case, the set of Presburger formulas are finite. The argument

of the completeness is similar to the propositional model checking [39].

84

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

6.5 Im plem entation and Perform ance Evalua

tion

Since the above-mentioned local model-checking technique also serves as the

basis for our query checking in Chapter 7, we leave our description of the im

plementation and experimental results to Section 7.4, where model checking is

considered as query checking without any placeholder. Typically, Table 10 and

Table 11 shows that our model checker runs faster than the Action Language

Verifier [17], the state-of-the-art model checker for Presburger systems.

85

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

www.manaraa.com

Chapter 7

Temporal-Logic Query Checking

for Presburger Systems

In this chapter, we describe our query checking approach for the Presburger

modal mu-calculus. Queries in our setting will consist of formulas in the mu-

calculus augmented with placeholders of form ?x , where X is a formula variable

used only for identification purposes. Placeholders may also have negation

applied to them in queries: so ->?x may also appear within a query. A query

may also have multiple placeholders ?x,?y, etc., distinguished by the formula

variables labeling the placeholders. For technical convenience, throughout of

the paper we assume that placeholders are different from formula variables,

and thus that queries are “formula closed”. We call an occurrence of the

placeholder l x is positive in a query V’ if it appears under no negation in the

query ip , and negative if it appears negated. A placeholder ?x is pure in a

query ip if all of its occurrences have the same polarity (positive or negative),

and mixed otherwise.

A query problem consists of a query formula ip and a PS G; a solution to

such a problem is an assignment of formulas to placeholders in tp such that G

satisfies the resulting mu-calculus ip ' obtained by replacing the placeholders in

86

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

V’ by their formulas. In general, a query problem can have many solutions; we

are particularly interested in strongest / weakest solutions, when they exist.

Sometimes we axe interested in a subset of data variables in a solution

to a placeholder. This is done with a projection operator {}” after the

placeholder. For example, suppose X = {x,y, z}, we only care about variable

x and y, then ?x : {1 , 2/} projects the solution from Z t o Z^x'yK

7.1 A Sim ple Exam ple

We use a simple example to show how our query checking works.

V

7 = 0

Figure 16: A simple transition graph

Considering the query formula AG?*, that is Y = (?x A [r]F), against the

transition system in Figure 16, computing the “solution” for ?x amounts to

answering the question “W hat’s the strongest invariant in the system?” . Note

that data variables p and q are unbounded. We show that this problem can

be solved with our Gentzen-like proof system. Taking the placeholder ?x as

a Presburger formula, we translate the query formula and the system model

into the following PES.

> j = A Y2\p' = 0 A cf = 1]

F2 = ?x AFi[p' = 1 Ag' = 0]1.

Then the query checking problem is reduced to finding the strongest for

mula that can replace ?x such that 3> —> Y\ is a tautology, where $ = (p =

1 A q = 0) is the initial condition of the transition system, and Y\ is generated

87

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

from the initial control location si and the formula variable Y . Applying the

proof rules, we get the following tableau.

$ h Yl

$ b?x A YJ^p' = 0 A (f = 1]

$ h Y2\p' =

f-HII<o

$ b ? x [p '= 0A q '= 1] A Y ^ = 1 A ^ = Oj

$ b?x[p/ = 0 A q' = 1] $> h T ib ' = 1 A q1 = 0]

p = 0 A q = 1 h?x A i/-leaf is reached

For this tableau (proof structure) to be successful, all its leaves must be suc

cessful. Now:

• The v-leaf $ I- V'i[p' = 1 A <f = 0] is successful.

• For sequent $ b?x to be a successful leaf, we need p = 1 A q

to be a tautology. The strongest formula to replace ?x such

sequent is valid would be $ itself, that is (p = 1 A q = 0).

• Similarly, for leaf p = 0 A q = 1 F?x to be successful, the

formula is (p = 0 A q = 1).

Therefore, to make the proof successful, we have the strongest

?x = (p = l A g = 0)V(p = 0A<7=l)

7.2 E xisten tia l Query Checking

The above example suggests an efficient symbolic approach for solving query

problems: determine the solutions to placeholders at the leaves of a poten

tially successful tableau (PST) that arise when applying our model-checking

procedure to a query. By PST, we mean a tableau whose leaves may contain

88

= 0 ^ ? x

that this

strongest

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

occurrences of placeholders and which could be identified as successful by ap

propriate assignments to these placeholders. For queries, it may be shown that

leaves containing placeholders in a PST may have one of two forms: <f> P?x

or ^ I— i?x, where 4> is predicate closed and placeholder closed, (i.e. without

any occurrence of any placeholder). We call such leaf sequents potentially suc

cessful leaves. Note that the occurrence of ?* in <f> h?* is positive, and the

occurrence of ?* in <fi I— '?* is negative.

Let G be a PS and V’ a query formula with (possibly multiple)

placeholders?*(, . . . , ?y). To solve against G, i.e. give a solution to all the

placeholders we compute the PEIS (augmented with queries) from the model-

checking problem for G and ip, treating placeholders like Presburger formula

in the translation; we call the resulting extended PES a query predicate, since

it contains placeholders. We then search for a potentially successful tableau

T by applying proof rules to the query predicate.

Existential query checking provides solutions to placeholders according to

a single (potentially) successful tableau. Once we have identified a potentially

successful tableau T, we compute solutions for the placeholders as follows.

1. The solution to the positive occurrences of placeholder ?* with respect

to T, written as [? * |t , is given by

[?*1t = ^ I $ *s a seQuent T}

2. The solution to the negative occurrences of placeholder ?* with respect

to T, written as I?*It, is given by

| ? *] | t = / \ { not(<£) | (f) I— i?x is a sequent in T}

We now have the following.

Theorem 7.2.1 Let T be a potentially successful tableau for a PES con

structed from query formula tp and PS G, and let ?* be a placeholder. Then

89

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

replacing all occurrences o f l x In T by any formula <p such that [?^ |T implies

(p and 4> implies | ? *] | t results in a tableau that can be extended into a successful
tableau.

Proof: The theorem holds apparently. ■

In other words, this theorem asserts that [? x] r and [?x J t “bound” the

solutions to the query problem that can be inferred from the PST T.

When ?x is pure and positive (i.e. ?x has no negative occurrences in cp),

then it may be shown that [?x!t = A ® = true\ and similarly for the case when

?x is pure and negative we have [?JJr = V ® = false. These observations lead

to the following corollary of the above theorem.

Corollary 7.2.2 Let T be a potentially successful tableau for a PES con

structed from query formula ip and PS G.

1. I f ?x is a placeholder in i>, then [?£]r is the strongest formula <p such

that T may be extended into a successful tableau when each positive oc

currence of ?x is replaced by <p.

2. I f ?x is a placeholder in ip, then [? x l r is the weakest formula <p such

that T may be extended into a successful tableau when each negative

occurrence of ?x is replaced by <p.

For instance, the positive solution to the placeholder ?x in section 7.1 is

I?£J = (p = l A <7 = 0)V(p = 0 A <7 = 1), while the negative solution is [?^J =

true. Therefore, any formula that is implied by (p = lA <7 = 0)V(p = 0 A<7 = 1)

and implies true, e.g. p = 0 V p = 1, <7 < 5, or p > 0 etc., can be used to

replace ?x in the query formula uY = (?x A (r]K), makes the model-checking

problem successful.

90

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

All the applications of the temporal-logic query checking established for

prepositional systems [61], such as reachability analysis, discovering invari

ants, guard discovery, guided simulation and test case generation etc. can be

formulated immediately as existential query-checking for Presburger systems.

The full paper will consider this point more fully.

7.3 U niversal Q uery Checking

In general, a query problem may give rise to many PSTs, each yielding a

boimd on the solution for each placeholder. Universal query checking provides

multiple solutions by the means of all (potentially) successful tableaux.

Previous works [61] shows that solving a prepositional tempo-ral-logic

query with a single placeholder takes 2 2” times slower than checking an equiv

alent model-checking property, where n is the number of atomic propositions

in the system. Application of these algorithms to industrial systems turns out

to be impractical, since a moderate system might contain dozens of boolean

variables, not mention of even a single unbounded integer variable in the sys

tem.

In our setting, universal query checking has to find all potentially success

ful tableaux, while existential query checking only needs to locate one (po

tentially) successful tableau; Consequently, existential query checking has the

same time complexity as local model checking, while universal query check

ing might take longer (since tableaux must be enumerated). Therefore, the

existential query checking has significant advantages in practice.

Note that for queries involving in an invariant or bounded liveness property,

in which a single greatest fixpoint requires computing, universal query checking

may have the same time complexity as the existential one, because there are

only a very small number of potentially successful tableaux in most cases. For

91

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

example, the query AG?* in Section 7.1 only leads to one PST.

7.4 Im plem entation

To evaluate the performance of our query-checking technique, we have built a

prototype called CWB-QC (Concurrency Workbench-Query Checking). The

algorithm uses a depth-first search technique with caching. The proof rules

in Figure 15 are used to generate sequents needed to be proved next in order

for the goal sequent to be true. The cache management are similar to the

real-time cases.

Symbolic Representations Symbolic representations enable model-based

analysis for large state spaces. They are one of the key elements to improve

the performance. There are two basic approaches to symbolic representation

of linear arithmetic constraints in verification.

1. Polyhedra representation This approach encodes linear arithmetic

formulas in a disjunctive normal form where each disjunct corresponds

to a convex polyhedra. Each disjunct corresponds to a conjunction of

linear constraints [49, 63]. The Omega Library [8 6], which we have used

as a decision procedure for the parametric real-time model checking, is

specially timed to solve integer problems in polyhedra representation. It

also implements an extension of the Fourier-Motzkin linear programming

algorithm [46].

2. Autom ata-based representation Automata-based representation of

Presburger formulas dates back to at least Biichi [70]. Recent devel

opments have proposed more efficient encodings [17, 27, 28, 35j. An

arithmetic constraint <£ over n integer variables can be encoded by a n-

track deterministic finite-state automaton A#. The language recognized

92

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

by A# corresponds to the set of all solutions to <f>. Since each integer can

be represented by the binary format in 2 ’s complement, a solution to <f>

can represented as a vector of a n binary strings, with each binary string,

or a tack, representing an integer for the corresponding variable. The

i — th column of the solution vector is the i — th least significant bits of all

variables. In what follows, we give a brief introduction [35]. We rewrite

the formula ^ i< i< n a<xi ~ c as aTx ~ c, where ~ e { < , < , = , > , > } ,

aT = {ai , . . . ,o„}, and

X =

\ Xn J

The automaton A# = (S, s0, Saccept, {0,1 }", 6), where S - - Z U s0 is the

set of states, the initial state so ^ Z; 5 ^ ^ is the set of accepting states,

defined as Saccept = {I € Z 11 ~ c}, united with {s0} if (—aTb ~ c) holds;

{0, l}n is the input alphabet. 6 is the transition function S x {0,1}" —► 5,

defined as follows,

£(s0, b) = —aT ■ b

6(1, b) = 21 + aT ■ b

where I € Z.

Let ||aT||_ = and ||oT||+ = E^xja,, theoretically, once the au

tomaton reaches a state outside of

[| | a T H - , l | a T | | +]

it is guaranteed to stay outside of this range and on the same side of it.

So all the states outside of the range can be collapsed into two states — oo

and +oo. As an example, Figure 7.4 shows an automaton for x — y < 0.

93

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

-00

+ 00

Figure 17: Automaton for x — y < 0

Both symbolic representations provides intersection, union, complement,

existential quantifier elimination, and inclusion, emptiness, equivalence test
ing. Therefore they can be used in verification.

94

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

The implication-checking procedure we employ is the MONA tool [71],

which provides an automata-based decision procedure for WSlS (weak

monadic second order logic with one successor) and takes BDDs to represent

the internal transitions . These features also make the MONA tool widely

used by other verification tools [17].

Note that all the experimental data in this chapter was collected on an

Intel Pentium III 700MHZ CPU and 512MB memory laptop, running Linux

2.4.

7.5 Case Study : A Sim ple T herm ostat

As an example, we analyze the requirements of a simple thermostat; this

example is adapted from the previous specification in [14]. The target system

is responsible for keeping the room’s temperature in a moderate range between

low and high if Switch is on. The SCR specification [62] of the system is given

in Figure 18.

An SCR requirements specification models the system in an event-driven

fashion. The input interface of the system is given as a set of monitored

variables and the output interface as a set of controlled variables. For example,

the thermostat reads the sensor of the room temperature and the status of the

switch; and it controls variables for the power switches of the heat and air

conditioner. The state space is partitioned into sets of states called modes.

The system changes its state due to conditioned events. For example, the

event @T(SwitchIsOn) represents condition “switch is tinned On from Off at

next state” and @T(TooCold) describes the condition “temp < low becomes

true at next state” , while condition SwitchlsOn says “switch is On” at the

current state.

Note that in the specification given in Figure 18, values of the constants

95

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Constants:
Monitored Variables:

Mode Class:
Initial Conditions:

TooCold
TempOK
TooHot

low, high : Integer;
temp : Integer;
Switch : {On,Off}
Thermostat : {Off,Inactive,Heat,AC}
Switch=Off;
Thermostat=Off;
low < high;
temp < low
temp > low & temp < high
temp > high

Old Mode SwitchlsOn Event New Mode
Off @T TooCold Heat

@T @T(TooCold)
@T TempOK Inactive
@T @T(TempOK)
@T TooHot AC
@T ©T(TooHot)

Inactive @F - Off
t OT(TooCold) Heat
t @T(TooHot) AC

Heat @F - Off
t @T(TempOK) Inactive

AC @F - Off
t @T(TempOK) Inactive

Figure 18: SCR specification of a simple thermostat

low, high are unspecified. These constants can take any integer value as long

as they satisfy the ordering low < high. Our representation of the system also

leaves these constants as unspecified.

M odeling th e th e rm o sta t as a PS We model the Thermostat as a sym

bolic transition system T = (S,R,Si , InitC), where 5 = 5/ = {s}, InitC =

(Switch = Off & Thermostat = Off), and the set of transition R is defined as

96

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

what follows.
(s, Thermostat = Off L Switch = Off &; temp < low, Switch' = On &

Thermostat'= Heat, r, s) ;

(s, Thermostat = Off &: Switch = Off & temp > low, Switch' = On & temp <

low & Thermostat' = Heat, r, s) ;

{ s, Thermostat = AC & Switch = On &; (temp > high | temp < low), low <

temp' < high & Thermostat' = Inactive, r, s) ;

Q uery form ulas Invariants summarize relationships between data variables

in the model and are often useful to add confidence to system designers. For

example, we can use the following queries to find interesting invariants in each

mode.

(a). AG (Thermostat=Off —►Tjq^Switch})

(b). AG (Thermostat=Inactive :{Switch,temp,low,high})

(c). AG (Thermostat=Heat : {Switch,temp,low})

(d). AG (Thermostat=AC —>?x4:{Switch,temp,high})

To check the status of the thermostat under different conditions, one can use

the queries

AG (Thermostat=Heat) —► EX?xs : {Thermostat}

AG (Switch=On & temp<low) : {Thermostat}

The query AG(?*7 : {Switch} —► Thermostat=Heat) can return the status of

the switch when the Thermostat is heating, and AG?x8 :{Thermostat} can

return all reachable modes in the system.

97

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Performance results One can check each of the above query formulas sep

arately, i.e. rim CWB-QC multiple times, or query the conjunction of all the

above formulas, i.e. run CWB-QC only once. We first take the former way

and perform the existential query checking with CWB-QC. Each rim takes

about 0.01 seconds and a maximal memory of 3 megabytes. For the latter

way, CWB-QC takes a total of 0.02 seconds and a maximal memory of 4

megabytes. Here are the output formulas to query predicates:

I?xJ t Switch = Off

Switch = On & low < temp < high

IVcAt Switch = On & temp < low

IPxJ t Switch = On & temp > high

IPxJ t Thermostat=Inactive | Off

IPxJ t Thermostat=Heat

V x M Switch=On

IDxJ t Thermostat=Off | Inactive | Heat | AC
Note that the system we check is unbounded since low, high remain un

specified. One cannot query such a system with a finite-state query checking

algorithm like the one [61], without using some abstraction techniques.

7.6 Perform ance C om parisons

Due to the absence of publicly available implementations of the query-checking

tools, we compare the performance of our query checker with our model

checker, and with the Action Language Verifier (ALV) [17] (version 0.3) for

Presburger systems.

Comparison with model checking The performance data are collected in

Table 9. Besides the thermostat, we also check the cruise control system [14] for

several invariant properties. Note that the performance of our model checker

98

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ith out p erm issio n .

www.manaraa.com

and existential query checker are virtually identical.

Table 9: Query checking performance comparison with model checking.
The letters in the names of the systems refer to the indexes of properties; s :
CPU time in seconds; k : maximum kilobytes of memory used by the verifier.

Example CWB-QC
query check

CWB-QC
model check

thermostat-a 0.01s/3236k 0.01s/2812k
thermostat-b 0.01s/3316k 0.01s/2812k
thermostat-c 0.01s/3348k 0.01s/2808k
thermostat-d 0.01s/3304k 0.01s/2812k
cruise-a 0.02s/2932k 0.02s/2700k
cruise-b 0.02s/2528k 0.01s/2528k
cruise-c 0.01s/4088k 0.01s/3240k
cruise-d 0.02s/3940k 0.01s/3264k
cruise-e 0.01s/3508k 0.01s/3248k
cruise-f 0.02s/3084k 0.02s/2836k

C om parison w ith ALV ALV is a symbolic model checker for Presburger

systems that which uses the Composite Symbolic Library (CSL) [108] as its

symbolic manipulation engine. CSL combines different symbolic representa

tions, which include the automata representation from the MONA package

adopted by CWB-QC. To be fair for the performance comparison, we run

ALV with the option “-F -I B” for forward and “-A -I B” for backward anal

ysis respectively, and only automata representations axe used.

Besides the above thermostat (all invariants are checked together), we have

also verified the mutual exclusion properties for both bakery and ticket proto

cols, and an invariant property for the sleeping barber problem. The specifi

cations for these systems are the same as [17]. The query formula we check for

these examples is AG?* and with projection over some data variables. Table 10

contains the performance data.

99

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithou t p erm issio n .

www.manaraa.com

These figures in Table 9 and Table 10 show that the query checking runs as

fast as the model checking of CWB-QC, and the latter is more efficient than

ALV. This fact together with the running time from the previous subsection

indicates that our proof-based symbolic query checking technique can provide

very efficient service to the design of Presburger systems in practice.

Fast E rro r-D etection of C W B -Q C The (potentially) successful tableau

constructed by CWB-QC provides a witness showing why the solution satisfies

the query. On the other hand, a counter-example is reported when a formula

is violated by the model. As an on-the-fly model checker, CWB-QC can detect

errors quickly. We show this by checking buggy formulas for the above case

studies.

The buggy formula we checked for the Thermostat is

AG(Thermostat=AC —> temp < high).

The property we verified for both ticket and bakery protocol is whether it

is allowed for a second process in the try mode while one is already in the

critical section. The barber algorithm is checked with the negation of an

invariant constraint. The performance data is reported in Table 11. CWB-

QC generally outperforms ALV on these case studies. We conjecture that the

superior performance in this case is due to the forward proof-based analysis of

our technique.

100

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 10: Query checking performance comparison with ALV-0.3.
The numbers in the names of the systems refer to the numbers of processes in the models, s : CPU time in
seconds; k : maximum kilobytes of memory used by the verifier; N/A : “UNABLE TO VERIFY” reported by
the model checker (in this case we still report the time and memory consumption); O/M: computation does not
terminate within one hour.

Example CWB-QC
query check

CWB-QC
model check

ALV-0.3
forward

ALV-0.3
backward

thermostat 0.02s/3804k 0.02s/2468k 0.11s/16288k 0.10/16192k
ticket-2 0.02s/3076k 0.01s/2468k 0.08s/15288k N/A(0.14s/15520k)
ticket-3 0.16s/3864k 0.11s/3368k 0.30s/15896k N / A(0.64s/16364k)
ticket-4 1.22s/5224k 1.04s/4760k 2.98s/19300k N/A(5.26s/26492k)
ticket-5 14.21s/12056k 14.00s/l1468k 20.83s/33552k N/A (30.24s/61584k)
bakery-2 0.01s/2832k 0.01s/2656k 0.11s/15576k 0.04s/15228k
bakery-3 0.51s/5496k 0.49s/3476k 14.40s/28368k N/A(0.79s/17604k)
barber-10 0.11s/4972k 0.10s/4688k 0.15s/16636k 0.16s/16952k
barber-12 0.12s/5500k 0.12s/4972k 0.17s/16924k 0.18s/17136k
barber-14 0.15s/5896k 0.15s/5376k 0.19s/17156k 0.19s/17560k
barber-16 0.18s/6496k 0.17s/5376k 0.21s/17360k 0.21s/17748k

www.manaraa.com

Reproduced
with

perm
ission

of the
copyright owner.

Further reproduction
prohibited

without perm
ission.

Table 11: Query checking performance comparison with ALV-0.3 for buggy properties.
The numbers in the names of the systems refer to the numbers of processes in the models, s : CPU time in
seconds; k : maximum kilobytes of memory used by the verifier; O/M: computation does not terminate within
one hour.

Example CWB-QC
model check

ALV-0.3
forward

ALV-0.3
backward

thermostat 0.00s/2784k 0.03s/15516k 0.02/16220k
ticket-2 0.01s/2848k 0.13s/15340k 0.06s/15360k
ticket-3 0.02s/2968k 2.64s/17644k 0.19s/16036k
ticket-4 0.03s/3432k 48.90s/45732k 1.45s/20796k
ticket-5 0.06s/4880k 820.84s/316988k 9.47s/37956k
bakery-2 0.00s/2468k 0.16s/15624k 0.07s/15116k
bakery-3 0.01s/2740k 13.79s/28504k 0.51s/17464k
barber-10 0.01s/2472k O/M 0.17s/17024k
barber-12 0.01s/2704k O/M 0.18s/17396k
barber-14 0.01s/3184k O/M 0.21s/17410k
barber-16 0.01s/3272k O/M 0.24s/17576k

www.manaraa.com

Chapter 8

Conclusion and Future Work

In this dissertation, we have developed a generic model-checking framework

for data-based systems. Existing model checking problems can be encoded via

predicate equation systems. We have investigated how global model checking

and local model checking techniques could be developed based on PESs. Espe

cially, a Gentzen-like proof system is proposed for the local model checking via

PESs. Two important applications of the local model checking technique have

been studied for the domains of real-time systems and Presburger systems.

R eal-tim e m odel checking We have presented an on-the-fly algorithm for

solving the traditional real-time and universal parametric real-time model-

checking problems based on PESs. Experimental results demonstrate that

our proof-theoretic method is significantly superior to existing approaches for

systems contain errors, while exhibiting competitive behavior for systems that

are correct. This fast error-detection capability of our technique makes it

especially interesting for industrial design in which model checkers are used

“early and often” to detect design errors in an ongoing manner.

103

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

T em poral Logic Q uery Checking We have also proposed a framework

for solving temporal-logic query checking for Presburger systems based on the

local model-checking technique. Existential query checking returns only one

solution to the query predicate by locating one potentially successful tableau,

while universal query checking returns multiple solutions from all such poten

tially successful tableaux. Our query checking works with multiple placehold

ers and placeholders with both positive and negative occurrences. Performance

comparisons show that our query-checking technique is very efficient and our

model-checking runs as fast as the existing state-of-the-art model checker ALV

for Presburger systems.

The efficient query checking and model checking together with the fast-

error-detection capability make CWB-QC interesting for the understanding of

system designs.

D irections for F u tu re R esearch Apparently, there are direct extensions

of the parametric model checking to Presburger systems and the temporal logic

query checking to real-time systems. These extensions are the benefits of the

generic model-checking framework. Techniques developed in one application

domain can be shared by another. With these tools in hand, the next step

would be some industry-level case studies. We are planning to apply them to

the projects from aerospace and automotive industries.

Our parametric algorithm terminates for parameter constraints taking the

form of finite sets on allowed values. We would investigate whether it also

terminates with a more general constraint over parameters (e.g. an infinite set

of parameter settings) in the future. To study the constraint synthesis problem

with our forward / backward approach would also be very interesting.

PESs provides a generic model checking framework. Seeking new tech

niques to solve the PESs, providing optimizations to existing algorithms would

be a long-run task.

104

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

In addition, advanced data structures play key roles in efficient symbolic

model checking for data-based systems. To invent and experiment new data-

structures would always be exciting. Particularly, we are planning to use

BDD-like data structures for our next version of the real-time model checking.

To find new applications based on PESs would also be promising. For

example, the relationship between vacuity checking [18, 73] and query check

ing has been studied by [93]. The idea is to use query checking to solve a

weaker (parameterized) version of vacuity. Typically, if M \= ip and there

is a stronger/weaker (depending on the polarity of the subformula in ques

tion) formula <f> which could be used to substitute the subformula ip in ip, and

M |= ip[(p <— <f>], we can say that <p is relatively vacuous with respect to <f> in

this model checking problem. And the existence of a stronger/weaker formula

can be detected by query checking. Therefore, our query-checking technique

can help to detect vacuity for the design of data-based systems.

Data mining is the practice of automatically searching large stores of data

for patterns. In recent years, attempts have been made to bridge model check

ing and data mining. For example, the XML path language can be encoded

into CTL formalism [56]. Since temporal logic can also be thought as pattern

language, it would be fruitful to systematically investigate how techniques

developed in the area of model-checking could be used for data mining.

105

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis

of computer algorithms. Addision-Wesley, 1974.

[2] R. Alnr, C. Courcoubetis, and D. Dill. Model-checking for real-time

systems. In Proceedings of LICS’90. IEEE Computer Society Press, 1990.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real

time. Information and Computation, 104(l):2-34, 1993.

[4] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi.

An implementation of three algorithms for timing verification based on

automata emptiness. In Proceedings of the 13th IEEE Real-Time Systems

Symposium, pages 157-166, 1992.

[5] R. Alur, K. Etessami, S. L. Torre, and D. Peled. Parametric temporal

logic for ’’model measuring” . In J. Wiedermann, P. van Emde Boas, and

M. Nielsen, editors, ICALP, volume 1644 of Lecture Notes in Computer

Science, pages 159-168. Springer, 1999.

[6] R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic verification

of embedded systems. IEEE Trans, on Software Engineering, 22(3): 181-

201, 1996.

[7] R. Alur and T. A. Henzinger. A really temporal logic. In Proceedings of

the 30th IEEE Symposium on Foundations of Computer Science, 1989.

106

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[8] R. Alur and T. A. Henzinger, editors. Computer Aided Verification

(CAV ’96), volume 1102 of Lecture Notes in Computer Science, New

Brunswick, New Jersey, July 1996. Springer-Verlag.

[9] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time rea

soning. In ACM Symposium on Theory of Computing, pages 592-601,

1993.

[10] R. Alur and D. Peled, editors. Computer Aided Verification, 16th

International Conference, CAV 2004, Boston, MA, USA, July 13-17,

2004, Proceedings, volume 3114 of Lecture Notes in Computer Science.

Springer, 2004.

[11] H. R. Andersen. Model checking and boolean graphs. Theoretical Com

puter Science, 126(1), 1994.

[12] H. R. Andersen. On model checking infinite-state systems. In A. Nerode

and Y. Matiyasevich, editors, LFCS, volume 813 of Lecture Notes in

Computer Science, pages 8-17. Springer, 1994.

[13] A. Annichini, A. Bouajjani, and M. Sighireanu. Trex: A tool for reacha

bility analysis of complex systems. In G. Berry, H. Comon, and A. Finkel,

editors, CAV, volume 2102 of Lecture Notes in Computer Science, pages

368-372. Springer, 2001.

[14] J. M. Atlee and M. A. Buckley. A logic-model semantics for scr software

requirements. In ISSTA, pages 280-292, 1996.

[15] F. Balarin. Approximate reachability analysis of timed automata. In

IEEE Real-Time Systems Symposium, pages 52-61. IEEE Computer So

ciety, 1996.

107

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[16] G. Bandini, R. F. L. Spelberg, R. C. H. de Rooij, and H. Toetenel.

Application of parametric model checking - the root contention protocol.

In 34th Annual Hawaii International Conference on System Sciences

(HICSS-34), 2001.

[17] C. Bartzis and T. Bultan. Efficient symbolic representations for arith

metic constraints in verification. International Journal of Foundations

of Computer Science (IJFCS), 14(4):605-624, Aug. 2003.

[18] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of

vacuity in actl formulaas. In Grumberg [60], pages 279-290.

[19] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and

W. Yi. Uppaal implementation secrets. In W. Damm and E.-R. Olderog,

editors, FTRTFT , volume 2469 of Lecture Notes in Computer Science,

pages 3-22. Springer, 2002.

[20] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Ef

ficient timed reachability analysis using clock difference diagrams. In

N. Halbwachs and D. Peled, editors, CAV, volume 1633 of Lecture Notes

in Computer Science, pages 341-353. Springer, 1999.

[21] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and

tools. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on

Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer

Science, pages 87-124. Springer, 2003.

[22] S. Berezin. Model Checking and Theorem Proving: a Unified Framework.

PhD thesis, Carnegie Mellon University, 2002.

[23] G. S. Bhat and R. Cleaveland. Efficient local model checking for

fragments of the modal /x-calculus. In T. Margaria and B. Stef

fen, editors, Proceedings of the Second International Workshop on

108

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

Tools and Algorithms for the Construction and Analysis of Systems

(TACAS ’96), Vol. 1055 of Lecture Notes in Computer Science, pages

107-126. Springer-Verlag, Mar. 1996.

[24] G. S. Bhat and R. Cleaveland. Efficient model checking via the equa-

tional //-calculus. In E. M. Clarke, editor, 11th Annual Symposium on

Logic in Computer Science (LICS ’96), pages 304-312, New Brunswick,

NJ, July 1996. Computer Society Press.

[25] G. S. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model

checking for ctl*. In Proceedings of the 10th Annual Symposium on Logic

in Computer Science (LICS ’95), pages 388-397, San Diego, July 1995.

IEEE Computer Society Press.

[26] N. Bjprner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. Manna, H. B.

Sipma, and T. E. Uribe. STeP: Deductive-algorithmic verification of

reactive and real-time systems. In Alur and Henzinger [8], pages 415-

418.

[27] B. Boigelot. Symbolic Mehtods for Exploring Infinite State Spaces. PhD

thesis, Universite de Liege, Belgium, 1999.

[28] A. Boudet and H. Comon. Diophantine equations, presburger arithmetic

and finite automata. In H. Kirchner, editor, CAAP, volume 1059 of

Lecture Notes in Computer Science, pages 30-43. Springer, 1996.

[29] G. Bnins and P. Godefroid. Temporal logic query-checking. In Proc. of

16th Annual IEEE Symposium on Logic in Computer Science (LICS’01),

pages 409-417, Boston, MA, USA, June 2001. IEEE Computer Society.

[30] V. Bruyere, E. Dall’Olio, and J.-F. Raskin. Durations, parametric model-

checking in timed automata with presburger arithmetic. In H. Alt and

109

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

M. Habib, editors, STACS, volume 2607 of Lecture Notes in Computer

Science, pages 687-698. Springer, 2003.

[31] V. Bruyere and J.-F. Raskin. Real-time model-checking: Parameters

everywhere. In P. K. Pandya and J. Radhakrishnan, editors, FSTTCS,

volume 2914 of Lecture Notes in Computer Science, pages 100-111.

Springer, 2003.

[32] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite

state systems using presburger arithmetic. In Grumberg [60], pages 400-

411.

[33] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 1020 states and beyond. In Proceedings of

the 5th IEEE Symposium on Logic in Computer Science, pages 428-439,

Philadelphia, PA, 1990.

[34] W. Chan. Temporal-locig queries. In E. A. Emerson and A. P. Sistla,

editors, CAV, volume 1855 of Lecture Notes in Computer Science, pages

450-463. Springer, 2000.

[35] J. Chang, S. Berezin, and D. L. Dill. Using interface refinement to

integrate formal verification into the design cycle. In Ahu- and Peled

[10], pages 122-134.

[36] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza

tion skeletons using branching-time temporal logic. In D. Kozen, editor,

Proceedings of the Workshop on Logic of Programs, Yorktown Heights,

volume 131 of Lecture Notes in Computer Science, pages 52-71. Springer-

Verlag, 1981.

110

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[37] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM

TOPLAS, 8(2), 1986.

[38] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,

1999.

[39] R. Cleaveland. Tableau-based model checking in the propositional mu-

calculus. Acta Informatica, 27(8):725-747, 1989.

[40] R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the

modal mu-calculus. In G. von Bochmann and D. K. Probst, editors,

CAV, volume 663 of Lecture Notes in Computer Science, pages 410-422.

Springer, 1992.

[41] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench:

A semantics-based tool for the verification of concurrent systems. ACM

TOPLAS, 15(1), 1993.

[42] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing

systems. In B. Jonsson and J. Parrow, editors, CONCUR, volume 836

of Lecture Notes in Computer Science, pages 417-432. Springer, 1994.

[43] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm

for the alternation-free modal mu-calculus. In K. G. Larsen and A. Skou,

editors, CAV, volume 575 of Lecture Notes in Computer Science, pages

48-58. Springer, 1991.

[44] A. Collomb-Annichini and M. Sighireanu. Parameterized reachability

analysis of the ieee 1394 root contention protocol using trex. In Pro

ceedings of Workshop on Real-Time Tools (RT-TOOLS’2001), Aalborg,

Denmark, August 2001.

I l l

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[45] H. Comon and Y. Jurski. Multiple counters automata, safety analy

sis and presburger arithmetic. In A. J. Hu and M. Y. Vardi, editors,

CAV, volume 1427 of Lecture. Notes in Computer Science, pages 268-

279. Springer, 1998.

[46] G. B. Dantzig and B. C. Eaves. Fourier-motzkin eliminationand its dual.

Journal of Combinatorial Theory A, 14:288-297, 1973.

[47] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos.

In R. Alur, T. A. Henzinger, and E. D. Sontag, editors, Hybrid Sys

tems, volume 1066 of Lecture Notes in Computer Science, pages 208-219.

Springer, 1995.

[48] G. Delzanno and A. Podelski. Model checking in clp. In R. Cleave

land, editor, TACAS, volume 1579 of Lecture Notes in Computer Sci

ence, pages 223-239. Springer, 1999.

[49] G. Delzanno and A. Podelski. Constraint-based deductive model check

ing. Journal of Software and Tools for Technology Transfer, 3(3):250-

270, 2001.

[50] D. L. Dill. Timing assumptions and verification of finite-state concurrent

systems. In J. Sifakis, editor, Automatic Verification Methods for Finite

State Systems, volume 407 of Lecture Notes in Computer Science, pages

197-212. Springer, 1989.

[51] X. Du, C. Ramakrishnan, and S. Smolka. Tabled resolution + con

straints: A recipe for model checking real-time systems. In Proceedings

of the 21st IEEE Real-Time Systems Symposium (RTSS 2000), 2000.

[52] E. A. Emerson and J. Y. Halpern. ‘Sometime’ and ‘not never’ revisited:

On branching versus linear time temporal logic. Journal of the ACM,

33(1):151—178, 1986.

112

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[53] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments

of the prepositional mu-calculus. In Proceedings of the First Annual

Symposium on Logic in Computer Science, pages 267-278, 1986.

[54] E. A. Emerson and R. J. Trefler. Parametric quantitative temporal

reasoning. In LICS 99, pages 336-343, 1999.

[55] C. Flanagan. Automatic software model checking using clp. In

P. Degano, editor, ESOP, volume 2618 of Lecture Notes in Computer

Science, pages 189-203. Springer, 2003.

[56] G. Gottlob and C. Koch. Monadic queries over tree-structured data. In

LICS, pages 189-202. IEEE Computer Society, 2002.

[57] J. Groote and T. Willemse. A checker for modal formulas for processes

with data. Technical report, Technische Universiteit Eindhoven, The

Netherlands, 2002.

[58] J. F. Groote and M. Keinanen. Solving disjunctive/conjunctive boolean

equation systems with alternating fixed points. In K. Jensen and

A. Podelski, editors, TACAS, volume 2988 of Lecture Notes in Com

puter Science, pages 436-450. Springer, 2004.

[59] J. F. Groote and T. A. C. Willemse. Parameterised boolean equation

systems (extended abstract). In P. Gardner and N. Yoshida, editors,

CONCUR, volume 3170 of Lecture Notes in Computer Science, pages

308-324. Springer, 2004.

[60] O. Grumberg, editor. Computer Aided Verification, 9th International

Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, vol

ume 1254 of Lecture Notes in Computer Science. Springer, 1997.

113

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[61] A. Gurfinkel, B. Devereux, and M. Chechik. Model exploration with

temporal logic query checking. In SIGSOFT FSE, pages 139-148, 2002.

[62] C. Heitmeyer, R. Jeffords, and B. Lawbaw. Automated consistency

checking of requirements specification. ACM Transactions on Software

Engineering and Methodology, 5(3) :231—261, 1996.

[63] T. A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: A model checker

for hybrid systems. Software Tools for Technology Transfer, 1:110-122,

1997.

[64] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model

checking for red-time systems. Information and Computation, 111(2),

1994.

[65] S. Hornus and P. Schnoebelen. On solving temporal logic queries. In

H. Kirchner and C. Ringeissen, editors, A MAST, volume 2422 of Lecture

Notes in Computer Science, pages 163-177. Springer, 2002.

[66] T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear para

metric model checking of timed automata. In Margaria and Yi [80],

pages 189-203.

[67] J. Jaffar and J. L. Lassez. Constraint logic programming. In Proceedings

of the 29th Symposium on Principles of Programming Languages, pages

111-119, 1987.

[68] J. Jaffar and M. J. Maher. Constraint logic programming: A survey.

Journal of Logic Programming, 19/20:503-581, 1994.

[69] J.Bradfield and C.Stirling. Local model checking for infinite state spaces.

Theoretical Computer Science, 96:157-174, 1992.

114

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[70] J.R.Biichi. On a decision method in restricted second order arithmetic.

In Proceedings of the International Cogress on Logic, Methodology and

Philosophy of Science, pages 1-11. Standford University Press, 1960.

[71] N. Klarlund and A. Moller. MONA Version 1.4 User Manual. BRICS

Notes Series NS-01-1, Department of Computer Science, University of

Aarhus, Jan. 2001.

[72] D. Kozen. Results on the propositional /z-calculus. Theoretical Computer

Science, 27(3):333-354, Dec. 1983.

[73] O. Kupferman and M. Vardi. Vacuity detection in temporal model check

ing. STTT, 4(2):224-233, Feb. 2003.

[74] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent

programs satisfy their linear specification. In POPL, pages 97-107, 1985.

[75] H. Lin. Symbolic transition graph with assignment. In U. Montanari

and V. Sassone, editors, CONCUR, volume 1119 of Lecture Notes in

Computer Science, pages 50-65. Springer, 1996.

[76] X. Liu, C. R. Ramakrishnan, and S. A. Smolka. Fully local and efficient

evaluation of alternating fixed points (extended abstract). In B. Stef

fen, editor, TACAS, volume 1384 of Lecture Notes in Computer Science,

pages 5-19. Springer, 1998.

[77] D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An

improved algorithm for the evaluation of fixpoint expressions. In D. Dill,

editor, Proceedings of the Sixth International Conference on Computer

Aided Verification (CAV ’94), Vol. 818 of Lecture Notes in Computer

Science. Springer-Verlag, 1994.

115

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[78] A. Mader. Verification of Modal Properties Using Boolean Equation

Systems. PhD thesis, Miichen, Techn-Univ., 1997.

[79] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:

Safety. Springer-Verlag, 1995.

[80] T. Margaria and W. Yi, editors. Tools and Algorithms for the Construc

tion and Analysis of Systems, 7th International Conference, TACAS

2001 Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Pro

ceedings, volume 2031 of Lecture Notes in Computer Science. Springer,

2001 .

[81] R. Mateescu. Local model-checking of an alternation-free value-based

modal mu-calculus. In Proceedings of the 2nd International Workshop

on Verification, Model Checking and Abstract Interpretation, Sept. 1998.

[82] R. Mateescu. A generic on-the-fly solver for alternation-free boolean

equation systems. In H. Garavel and J. Hatcliff, editors, TACAS, volume

2619 of Lecture Notes in Computer Science, pages 81-96. Springer, 2003.

[83] J. B. Mpller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Differ

ence decision diagrams. In J. Flum and M. Rodrfguez-Artalejo, editors,

CSL, volume 1683 of Lecture Notes in Computer Science, pages 111-125.

Springer, 1999.

[84] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS:

Combining specification, proof checking, and model checking. In Alur

and Henzinger [8], pages 411-414.

[85] A. Pnueli. Linear and branching structures in the semantics and logics

of reactive systems. In W. Brauer, editor, ICALP, volume 194 of Lecture

Notes in Computer Science, pages 15 32. Springer, 1985.

116

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

[86] W. Pugh. The omega test: a fast and practical integer programming

algorithm for dependence analysis. Communications of the ACM, 8:102-

104, 1992.

[87] J. P. Queille and J. Sifakis. Specification and verification of concurrent

systems in Cesar. In Proceedings of the International Symposium in

Programming, volume 137 of Lecture Notes in Computer Science, Berlin,

1982. Springer-Verlag.

[88] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A.

Smolka, T. Swift, and D. S. Warren. Efficient model checking using

tabled resolution. In Grumberg [60], pages 143-154.

[89] C. R. Ramakrishnan. A model checker for value-passing mu-calculus

using logic programming. In I. V. Ramakrishnan, editor, PADL, volume

1990 of Lecture Notes in Computer Science, pages 1-13. Springer, 2001.

[90] J. Rathke. Symbolic techniques for value-passing Calculi. PhD thesis,

University of Sussex, 1997.

[91] J. Rathke and M. Hennessy. Local model checking for value-passing

processes (extended abstract). In M. Abadi and T. Ito, editors, TACS,

volume 1281 of Lecture Notes in Computer Science, pages 250-266.

Springer, 1997.

[92] M. Samer and H. Veith. Validity of ctl queries revisited. In M. Baaz

and J. A. Makowsky, editors, CSL, volume 2803 of Lecture Notes in

Computer Science, pages 470-483. Springer, 2003.

[93] M. Samer and H. Veith. Parameterized vacuity. In A. J. Hu and A. K.

Martin, editors, FMCAD, volume 3312 of Lecture Notes in Computer

Science, pages 322-336. Springer, 2004.

117

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

[94] J. Sifakis. A unified approach for studying the properties of transition

systems. TCS, 18, 1982.

[95] H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. In

Alur and Henzinger [8], pages 208-219.

[96] O. Sokolsky and S. A. Smolka. Local model checking for real-time sys

tems (extended abstract). In P. Wolper, editor, CAV, volume 939 of

Lecture Notes in Computer Science, pages 211-224. Springer, 1995.

[97] R. F. L. Spelberg and W. J. Toetenel. Parametric real-time model check

ing using splitting trees. Nordic Journal of Computing, 8(1):88—120,

2001 .

[98] A. Szalas. Logic for computer science, lecture notes. URL

http://www.ida.liu.se/~andsz.

[99] A. Szalas. On natural deduction in first-order fixpoint logics. Funda-

menta Informaticae, 26:81-94, 1996.

[100] L. Tan. Evidence-Based Verification. PhD thesis, State University of

New York at Stony Brook, 2002.

[101] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pac. J. Math., 1955.

[102] B. Vergauwen and J. Lewi. Efficient local correctness checking for sin

gle and alternating boolean equation systems. In S. Abiteboul and

E. Shamir, editors, ICALP, volume 820 of Lecture Notes in Computer

Science, pages 304-315. Springer, 1994.

[103] F. Wang. Parametric timing analysis for real-time systems. Information

and Computation, 130:131-150, 1996.

118

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

http://www.ida.liu.se/~andsz

www.manaraa.com

[104] F. Wang. Parametric analysis of computer systems. Formal Methods in

System Design, 17(1):39—60, 2000.

[105] F. Wang. Efficient verification of timed automata with bdd-like data-

structures. In L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay,

editors, VMCAI, volume 2575 of Lecture Notes in Computer Science,

pages 189-205. Springer, 2003.

[106] F. Wang. Symbolic parametric safety analysis of linear hybrid systems

with bdd-like data-structures. In Alur and Peled [10], pages 295-307.

[107] F. Wang and H.-C. Yen. Parametric optimization of open real-time

systems. In P. Cousot, editor, SAS, volume 2126 of Lecture Notes in

Computer Science, pages 299-318. Springer, 2001.

[108] T. Yavuz-Kahveci, M. Tuncer, and T. Bultan. A library for composite

symbolic representations. In Margaria and Yi [80], pages 52-66.

[109] S. Yovine. Kronos: A verification tool for real-time systems. Software

Tools for Technology Transfer, 1:123-133, 1997.

[110] D. Zhang and R. Cleaveland. Efficient temopral logic query checking for

presburger systems. In Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2005), November

7-11, 2005, Long Beach, California, USA. IEEE Computer Society, 2005.

[111] D. Zhang and R. Cleaveland. Fast generic model-checking for data-based

systems. In F. Wang, editor, Proceedings of the 25th International Con

ference on Formal Techniques for Networked and Distributed Systems

(FORTE 2005), volume 3731 of Lecture Notes in Computer Science,

Taiwan, Oct. 2005. Springer-Verlag.

119

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

[112] D. Zhang and R. Cleaveland. Fast parametric real-time model check

ing. In Proceedings of the 26th IEEE Real-Time Systems Symposium

(RTSS 2005), December 5-8, 2005 Miami, Florida, USA. IEEE Com

puter Society, 2005.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

Index

ALV, 9, 99

assignment, 17

BDD, 95

BDD-like data structure, 60

BES, 2, 38

boolean equation systems, 2, 14, 38

boimd variables, 12

calibration parameters, 4

case study

bakery, 101

barber, 102

CSMA/CD, 67, 73

FDDI, 66

GRC, 73

LBOUND, 67

LEADER, 67

MUX, 66, 73

PATHOS, 66

REACTOR, 73

thermostat, 95

ticket, 101

clock region, 47

clock zones, 47

CLP, 3

complete lattice, 10, 20

concrete actions, 28

Concurrency Workbench, 8

constraint solver, 3

constraint synthesis, 5

CRD, 60

CSL, 99

CTL, 1, 2, 5, 7, 31, 81, 105

CTL*, 1

CWB-QC, 8, 92

CWB-RT, 56

data expressions, 16

data predicates, 16

data states, 17

DBM, 56

discrete-time model checking, 22

environment, 11, 29, 43, 81

finite-state model checking, 38

first-order boolean equation sys

tems, 2

121

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

www.manaraa.com

first-order modal mu-calculus, 29

fixpoint, 10

fixpoint approximation, 11, 21

fixpoint equation systems, 12

parity block, 12

semantics, 12

syntax, 12

Floyd-Warshall algorithm, 57, 60

Fourier-Motzkin algorithm, 92

free variables, 12, 16, 18

Gentzen-like proof system, 23, 49,

83

Horn clause, 3

HRD, 61

HyTech, 72

internal action, 29

Kronos, 65

linear terms, 41, 78

local model checking, 3

logic programming, 3

LPMC, 72

LTL, 1

MES, 29, 31, 43, 81

modal equation systems, 29

formula variables, 29, 43, 81

formula-closed, 29

semantics, 29, 30

syntax, 29

modal mu-calculus, 1, 29, 33

MONA, 95

Omega Library, 60, 92

parameter valuation, 41

parameterized boolean equation

systems, 39

parametric real-time model check

ing, 4, 40

parity indicator, 12, 19

partial order, 10

PDBM, 56

PES, 2, 19, 20

placeholder, 7, 86

polyhedra, 92

positive normal form, 31

predicate equation systems, 19

basic data theory, 16

predicate block, 20

predicate calculus, 18

predicate equation block, 19

predicate state, 18

predicate variables, 18

predicate-closed, 18

Presburger formulas, 79

Presburger modal mu-calculus

semantics, 81

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

www.manaraa.com

syntax, 81

projection operator, 87

PST, 88, 91

real-time modal mu-calculus

semantics, 43

syntax, 43

RED, 65, 72

SCR, 95

sequent, 23

skolemization, 26

state predicates, 41

state-transformation formula, 17,

30

strongest postcondition, 18, 48

substitution operation, 16, 18

successful leaf, 23

symbolic action, 32

TCTL, 44

temporal-logic query checking, 7, 86

existential query checking, 88

universal query checking, 91

time predecessor, 48

time successor, 48

transition systems

concrete transition systems, 28

CTS, 29, 33, 42, 43, 81

event-action language, 32

Linear Process Equations, 32

parametric timed automata, 41

Presburger systems, 7, 79

PS, 79, 86

STG, 32, 33

STGA, 32

symbolic transition graphs, 28,

32

timed automata, 32

value-passing CCS, 32

translation function, 35, 46, 82

TReX, 72

universal parametric real-time

model-checking, 5

UPPAAL, 65

vacuity checking, 105

weakest precondition, 30, 48

WS1S, 95

XML, 105

123

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm ission .

