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Abstract of Dissertation  

M odel Checking for Data-Based Concurrent Systems

by
Dezhuang Zhang 

Doctor o f Philosophy 

in

Computer Science 

Stony Brook University 

2005

This dissertation introduces predicate equation systems (PESs) as a uni

form symbolic basis for model checking of data-based concurrent systems. In 

contrast with the finite-state concurrent systems that most model-checking 

research is directed toward, data-based concurrent systems use data variables 

that may draw values from infinite sets. PESs generalize first-order logic by 

adding capabilities for recursively-defined predicates, and may be seen as a 

first-order generalization of the well-studied boolean equation systems used in 

finite-state model checking.

The dissertation also introduces a goal-directed, Gentzen-like proof system 

for proving PES formulas and shows how it may be used to define on-the-fly 

model checkers for data-based model-checking problems. Then the theory is 

used to develop model checkers for different data-based model-checking prob

lems: real-time model checking, in both traditional and parametric forms; 

model-checking for Presburger systems, which feature the use of integer vari

ables; and temporal-logic query checking for Presburger systems. In each case, 

implementations are presented, and extensive experimental data collected to 

compare these algorithms with existing approaches, when such exist. The gen

eral proof-search approach given here generally outperforms, in often startling 

fashion, the specialized routines found in the literature for these problems.
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Chapter 1

Introduction

Temporal-logic model checkers [36, 38, 87] automatically establish whether or 

not a system satisfies a specification given as a formula in temporal logic. The 

model-checking problem has been studied most intensively in the area of finite- 

state systems but also for classes of real-time systems and systems involving 

integer-valued variables. (Of course, for arbitrary systems involving integers, 

model checking is not decidable.) A number of different temporal logics have 

also been studied, including LTL [74], CTL [37], CTL* [52] and the modal 

mu-calculus [72].

An interesting insight to emerge in the area of finite-state model check

ing is that model-checking questions can be reduced to solving systems of 

propositional equations [11, 43] called boolean equation systems. This obser

vation leads to a uniform framework for understanding a number of different 

model-checking techniques, including so-called symbolic approaches [33]. It has 

also served as a basis for new algorithms, including efficient on-the-fly model- 

checkers for the mu-calculus [11] and symbolic algorithms based on Gaussian 

elimination [78], and algorithm optimizations, e.g. [23, 43, 58, 77, 102] etc.

The motivation of this dissertation is to develop a similar framework for

1
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model checking of systems that manipulate values and thus may not be finite- 

state. The main results obtained are described below.

1.1 P red icate Equation System s

This dissertation develops predicate equation systems (PESs) as a uniform ba

sis for verifying data-based systems [111]. PESs generalize boolean equation 

systems to full first-order logic and may be seen as an extension of the pred

icate calculus with recursively-defined predicates. We show how PESs may 

be used to encode model-checking problems, including those for Presburger 

systems [32] and real-time model checking [64], may be cast in terms of PESs, 

and discuss generic model-checking techniques that immediately follow from 

the recursive form of PESs.

We also define a goal-directed, Gentzen-like proof system for establishing 

that formulas defined in the context of a PES are valid (i.e. are tautologies). 

This proof system is shown to provide a generic basis for on-the-fly model 

checking of data-based systems.

R elated  W ork A number of model checking frameworks have been pro

posed for (infinite-state) data-based systems. These various approaches can 

be characterized along several axes.

Boolean equation systems (BESs) have received a lot of attention since the 

model checking algorithms with CTL [37] and with modal mu-calculus [53] 

were introduced. A number of finite-state model-checking algorithms were 

developed directly over BESs, including [11, 24, 40, 43, 76, 78, 82, 100]. The 

first-order boolean equation systems [57, 59] is used for model-checking infinite- 

state value-passing systems. Predicate equation systems provide a more gen

eral framework in the sense to encode real-time model checking, and we focus 

on algorithmic issues and are devoted to develop new applications, e.g. query

2
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checking.

Logic programming has been used to solve model-checking problems e.g. 

see [88, 89] etc. A logic program is a sequence of clauses, called Horn clauses, 

each of which has the form A <— B\ A . . .  A Bn where are atomic

formulas. A constraint logic program (CLP) [67, 68] is a first order extension 

of logic program. A constraint is a finite conjunction of atomic formulas built 

on a given set of constraint constructors. Constraints will be interpreted over 

a fixed domain and handled via a constraint solver. The least model of a CLP 

program can be defined as the least fixpoint of an operator that computes 

the direct logical consequences of the program and of a given set of atomic 

formulas. Several papers [48, 51, 55] have demonstrated the potentiality of 

CLP as a symbolic model checker for infinite-state systems. Both PESs and 

CLPs provide the capability for fixpoint computations. CLPs use resolution 

based method while PESs allows us to algebraically reason the model checking 

problem.

Local model checking tries to avoid constructing the global state space of 

the system, and access as few states as possible and only build fragments of 

the state space as needed. Algorithms in this category include tableau-based 

model-checking procedures for infinite-state systems [12, 69], value-passing 

systems [90], deductive model checking (see e.g. [26, 79, 95]) and attempts 

to combine theorem prover and model checking (see e.g. [22, 84]). These 

works consider the general termination condition for fixpoint computations 

and provides relative completeness. We have also provided a novel Gentzen- 

like proof system for PESs which could be customized for different applications.

3
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1.2 T he First-O rder M odal M u-C alculus

This thesis also develops a first-order generalization of the modal mu- 

calculus [72] and presents general strategies for translating model-checking 

problems for this logic into PESs. It is also shown how existing temporal log

ics for data-based systems, including the real-time modal mu-calculus [96] and 

Presburger CTL [32], may be translated into this logic.

1.3 R eal-T im e M odel Checking Problem s

Real-time model checking [2, 7, 64] has received a lot of attention in the past 

15 years. In the traditional formulation of the problem, one is given a real

time system modeled as a timed automaton and a specification as a formula in 

temporal logic and required to determine whether or not the system satisfies 

the formula.

In practice, system models often contain parameters that can be adjusted 

to time model behavior. In automotive and aerospace applications, these 

parameters are often referred to as calibration parameters. For example, in 

an automobile-engine controller one calibration parameter might describe the 

number of cylinders in the engine, while another might be the maximum al

lowed revolutions-per-minute the engine can undergo. Setting these param

eters to different values allows the same model to be “deployed” for differ

ent engine models. These calibration parameters are also usually equipped 

with constraints on their allowed values; the number of cylinders might be 

restricted to 4, 6 or 8, for example, while the maximum RPM setting might 

be constrained to fall in the interval [7000,8000]. Model checking such a pa

rameterized system would require checking model correctness for all parameter 

settings against a temporal formula that may also involve the same parameters.

4
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We show how the general framework PESs may be used for both non- 

parametric real-time model checking and checking a parameterized model 

against a parameterized formula. We call the latter problem the universal 

parametric real-time model-checking problem [112] because, in contrast with 

other work on parametric real-time systems, our interest consists in deter

mining whether or not every parameter setting consistent with parameter 

constraints leads to correct behavior. A naive approach to the universality 

problem is to test each parameter assignment. For each parameter valuation, 

one needs to perform the model-checking algorithm once. Such a computation 

might be prohibitive, since the number of possible parameter valuations may 

be very large. We present a local parametric model-checking algorithm for 

solving such a general problem symbolically, which only needs one execution 

of the model-checking process.

R elated  W ork Several parametric real-time analysis problems have been 

investigated. The emptiness problem is the following: given a parameterized 

real-time system having parametric bounds on delays, and a state in the real

time system, is there an assignment of values to the parameters such that the 

the desired state can be reached? This problem is known to be undecidable 

in general [9], although for dense time systems with single parametric clock, 

decision procedures exist. The constraint synthesis problem is related to our 

universality problem: given a parametric real-time system and formula, derive 

the most-general constraints over parameters that make the model-checking 

problem successful. This problem is studied in [5, 13, 16, 30, 31, 54, 66, 103, 

104, 106]. Although the constraint-synthesis problem for timed CTL with 

parameters appearing only in formulas is decidable, the same does not hold 

for timed automaton with parameters in general. For example, [31] showed 

that the model checking of parametric timed CTL is undecidable over timed 

automata with only one parametric clock. The optimization problem, i.e.

5
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find the optimal valuations of parameters according to some given criteria, is 

considered in [5, 107) etc.

All of these problems differ from the one considered here in that no a priori 

constraints on parameters are considered as given. In our experience with a 

variety of automotive and aerospace companies, however, such constraints are 

always given, and indeed are often specified even before the parametric model 

is constructed. The current work is intended to initiate study into this problem 

and offer a solution in certain practically relevant cases.

Our local parametric real-time model-checking algorithm encodes the 

model-checking problem with PESs. The solving of PESs is performed by 

providing a valid proof (i.e. successful tableau) for an initial predicate. In 

contrast with other real-time model-checking techniques, which employ either 

“forward” or “backward” analysis techniques, our proof search technique works 

in a forward /  backward style. Proofs are constructed in a goal-directed, “for

ward” manner, with information obtained in one branch of proof construction 

allowed to flow “backward” to improve proof construction in other branches. 

The forward component of our strategy supports early termination in case 

errors are detected, while the backward element enables efficient computation 

when no errors are present. Experimental data shows that our algorithm sig

nificantly outperforms other existing tools to detect errors while having com

parable performance when there are no errors. Since the universal problem 

can be seen as the dual of the emptiness problem, it is impossible to provide an 

algorithm which could terminate with more than two parametric clocks (even 

the decidability of the case with two clocks is open). However, our solution 

procedure does terminate when parameter constraints take the form of finite 

sets: a restriction we impose in this dissertation.

Among existing real-time model-checking works, the algorithms of [96, 97] 

are most related to ours in the sense that theirs also works in a forward /

6
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backward way to refine regions. Our method is somewhat different in being 

based on proof search; this basis permitted us to identify situations, specifically 

in the checking of invariance properties, in which we can avoid clock-zone- 

splitting operations that their algorithm required. Consequently, we conjecture 

that our algorithm will significantly outperform those, although the absence of 

publicly available implementations of these tools prevented us from assessing 

this empirically.

1.4 Tem poral-logic Query Checking

Temporal-logic query checking [34] has emerged as a useful extension to model 

checking for supporting requirements and design understanding. The query- 

checking problem may be formulated as follows: given a model and a temporal 

logic formula with placeholders (i.e. a query), compute a set of assignments of 

formulas to placeholders such that the resulting temporal formula is satisfied 

by the given model. For example, solving the CTL query AG ?x  , where l x  

is a placeholder, for the strongest formula making the query true yields the 

invariant (2 < x < 5) A (3 < y < 8) for the Presburger system in Figure 1. In 

the figure, the system is given as a state machine that can modify and test the 

values of integer variables x, y. Each transition includes a conditional guard 

determining whether or not the transition may fire; and and an optional 

update action to be performed when the transition fires. The “start state” 

arrow also contains the initial conditions on the values of x, y; here, x =  2 and 

y =  3 when the system begins execution.

Temporal-logic query checking has proved valuable as a means for model 

understanding. For example, given an early attempt at a specification for a 

system, one would want to validate some desired temporal-logic properties 

with a model checker. Some of the properties might fail to hold, in which

7
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x <  5; x4- + x >  2; x ----

x =  2 
y  = 3

y <  8; y-P + y >  3; y ----

Figure 1: A Presburger system

case one might infer either that the specification requires revision or that the 

properties are faulty. To determine which situation holds, one can modify 

formulas into queries in order to retrieve the strongest formulas that makes 

the query true, and obtain more diagnostic information to help improve the 

design. Even if a property is proved to hold in the model, one can still use a 

query checking to obtain much stronger properties and thus understand more 

precisely the behavior of the system.

We develop query-checking techniques for a class of system models that use 

integer-valued variables (so-called Presburger systems, in which Presburger 

formulas are used to define system behavior) [110]. Our method uses the 

symbolic model-checking technique that relies on proof search. Solutions to a 

placeholder are inferred at the leaves of a proof tree in order to ensure that 

the resulting proof is valid.

The principal contributions of our query-checker, which we call CWB-QC 

(Concurrency Workbench [41] -  Query Checking), are the following.

(1) CWB-QC is the first query checker for the class of (infinite-state) Pres

burger systems. Existing query checkers [61] only deal with finite-state 

systems. With CWB-QC, formulas and systems can manipulate integer

valued variables and may thus be infinite-state.

8

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



www.manaraa.com

(2) Our solution focuses on the existential ( “find a solution”) query-checking 

problem, as opposed to the universal one ( “find all solutions”). The 

latter problem is the usual one studied, but its double exponential time 

complexity limits its application [29, 61]. However, the applications of 

query checking that are most often cited [61], existential query checkers 

can equally well be used, and at much lower computational cost.

(3) Our existential query checker runs as fast as our model checker, and 

faster with more precise results than the Action Language Verifier [17], 

the state-of-the-art model checker for Presburger systems.

R elated  W ork As originally proposed by Chan [34], query checking concen

trated on valid queries, i.e. queries that always have a unique strongest solution 

for every system. Recent work has extended this seminal research in several 

ways. Bruns and Godefroid [29] studied how to adapt the automata-theoretic 

model-checking approach to solve the query-checking problem. Gurfinkel et 

al. [61] enriched the query language with multiple placeholders and imple

mented query checking using a multi-valued model checker. The problem of 

deciding whether a given query has a unique strongest solution over a given 

system and how to compute this solution is studied in [65]. The valid-query 

problem is revisited by [92]. All these works focus on propositional temporal 

logic and finite-state systems.

9
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Chapter 2 

Fixpoint Equation Systems

This chapter introduces a general account of fixpoint equation systems [100] 

over complete lattices.

2.1 L attices and F ixpoints

Let Q be a set and CC Q x Q be partial order on Q, where a partial order is 

a reflexive, antisymmetric and transitive relation. Then (Q, C) is a lattice if 

every pair of elements p, q 6 Q has a greatest lower bound p (1 q e  Q and a 

least upper bound p U q e  Q. If for every subset S C Q ,  there exists a least 

upper bound US' and a greatest lower bound nS, (Q, C) is called complete 

lattice. Note that every complete lattice has a maximum element T =  U0 and 

minimum element _L =  n0, and that every finite lattice is complete.

A function (j> : Q —► Q is called monotone if whenever q C q' then (f>(q) C 

It is continuous if for every subset S e  Q, <f>(\JS) =  U</>(S). An element 

q € Q is a fixpoint of <f> if <f)(q) =  q.

Let (Q , Q  be a complete lattice, according to Knaster-Tarski Fixpoint 

Theorem [101], every monotonic function <f> 6 QQ has a unique least fixpoint 

p4> E Q and greatest fixpoint u<p 6 Q defined by,

10
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= n{<7 e Q | 0 (g ) c 9}
1/0 =  Ll{g G Q I q C 0 (g )}

The greatest and least points of a continuous function 0 over a complete 

lattice may be characterized as an infinite conjunction and disjunction of ap- 

proximants respectively,

1/0 =  n “ o0i

H<t> = U-Q0,

where,

0o =  T 

4>i+1 =  0 (0 i)  

00 =  -L

0 i+ l =  0 (0 i)

Let (Q, Q  be a complete lattice and X be a finite set of variables. The set 

Qx consists of all functions mapping X to Q. We call a function 9 g Qx as an 

environment over X. Then Qx represent the set of all environments over X. 

Environments constitute a complete lattice under the pointwise extension of 

C to Qx: 6 C ff if and only if for all X  G X, 9(X) C 0'(X).

We assume that if 6 G Qx and 6 G Qr  then X =  X', and we write dom(0) =  

X for the domain of 9. We sometimes write Qx as X —► Q. If 9 G Qx and 

9' G Q'x  , then 9[ff] represents the fimction in (Q U Q/) (XuX’  ̂ defined as follows.

( 0 [ 0 ' ] ) ( x )  =

ff{x) if x  G X' 

9(x) otherw ise

11
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Also, if 9 € Qx and X' C X, then 9\X' denotes the function in Q3̂  defined by 

(0[X')(x) =  6(x) if x e  X'. Finally, if X =  {xi , . . .  ,i„}  and {gi, ...,<?„} C Q 

then (xi : = q i , . . . ,x n := qn) represents the function that maps each x, to q{.

2.2 F ixpoin t E quation System s

Syntax An equation block B  is a set of equations {X i =  . . . ,  X t =  /;},

where fi are monotonic fimctions with type Qx —> Q. Variables A, e  X and

are distinct. We use Ihs(B) to denote the left-hand side variables in block B, 

and rhs(Af) to refer to the right-hand side of the equation whose left-hand side 

variable is X x. Function vars(/<) denotes the set of free variables in fi. We 

define vars(fi) = lhs(£?) U (J*=1 vars(/,) as the variables in equation block B  

and refer to variables in Ihs(B) as bound and variables in vars(B) — Ihs(B) as 

free.

A parity block E  has the form (p, B), where p E {p, v} is a parity indicator 

and B  is an equation block. We lift the notions Ihs, rhs, vars, free variable and 

boimd variable to parity block in the straightforward manner.

A fixpoint equation system is a nonempty sequence E = E \ . . .  Em of parity 

blocks whose left-hand sides are pairwise disjoint. If E' is an equation system 

and E  is a parity block whose left-hand side variables are disjoint from those 

in E' then we write E  :: E' for the equation system obtained by adding E  to 

front of E'. We use Efc =  EkE^+i. . .  to refer to the subsequence of E starting 

from the A:-th parity block. Operations Ihs, rhs, vars, free variable and bound 

variable are generalized in the straightforward manner. We call E as closed if 

every X  € vars(E) is bound, i.e. an element of Ihs(E).

Sem antics We first consider the semantics of the p-blocks B  =  {Ai =  

f i , . . . , X i  = /(}. Let X' =  {Xi , . . . ,Aj} and 6 E Qx. Define a function 

Jb ,0 ■ Qr  —> Qr  mapping environments over X' to environments over X' as

12
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follows.

f Bfi{ff) =  (X ! := h { 9\e' 1), • • • , * , : =  M O W )))  (1)

Intuitively, /s,e(0/) returns an environment over X' in which each is mapped 

to the result returned by evaluating on environment 8{8'\. Note that we use 

d[8'\ to denote the environments updated by O'. It follows from the monotonic

ity of the f j  that for any 6, f Be is a monotonic function over Qx'. Tarski’s 

fixpoint theorem then ensures the existence of least and greatest fixpoints, 

h /b ,9 and which are environments over X'. Given 8 e  Qx, we define the 

semantics of a parity block in terms of these fixed points: |(p, B)\8  =  p fB,o- So 

[(p, B)j maps environments over X to environments over X', where X' consists 

of the left-hand side variables in B.

For the semantics of an fixpoint equational system E, given an environment 

8, we define a function fog : Qx —► Qx  inductively on the structure of E and 

the above block semantic fimction f Btg. When E contains a single parity block, 

we take fo tg =  f B<0 and define [EJ0 =  [(p, B)\8. When E contains more than 

one blocks, it may be written as E =  (p, B) :: E', where E' is also an equational 

system. In this case fo,g is defined as

t o w  = (2)
where XB =  Ihs(B). Intuitively, this function may be imderstood by inspect

ing its subexpressions. [E'](0[0']) is the environment over Xe' defined by E' 

in environment 8 updated with bindings contained in 8'. This environment 

assigns a “fixpoint value” to every left-hand variable in E'. /b ,9[[e'] (»[«'])] is the 

function on environments defined by block B  and the environment obtained 

by updating 6 with the bindings in E'. 8’ \XB is the sub-environment of O' 

obtained by restricting variables to those that appear as left-hand sides in B.

One may then evaluate fog{0') as follows.

13
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(1) Update the global environment 0 with bindings contained in O'.

(2) Compute the meaning of E' in this new global environment to obtain 

new bindings for the left-hand side variables in E'.

(3) Update 0 with these new bindings.

(4) Evaluate fs,... with respect to this new global environment and the bind

ings, using as input the bindings for the left-hand side variables of B  that 

are given in O'.

It is easy to show that f£,g(0') is monotonic over the lattice Qx and hence 

has unique least and greatest fixpoints. We then define [E]0 as follows.

[(p , B ) :: E ' ]0  =  pf<p,B)::E',e

If E is closed then for any 9, O' we have that [EJ0 =  [E]^. In this case we often 

omit reference to 0  and write [E] for this (unique) environment.

2.3 B oolean  Equation System s

As an example, we consider the Boolean equation systems defined over the 

Boolean lattice (0,1, Q , where 0 and 1 are the boolean values “false” and 

“true”, respectively, with 0 II 1. In this setting environments may be viewed 

as characteristic functions of subsets of X, so we allow the use of the standard 

set operators U, fl, and — on such environments. The right-hand sides of 

equations are the formulas given by the following, where X' C X.

f  : = \ J x '  I / \ r

We often write t t  for / \0  and ff for \J 0. The definition of [/]0 is standard:

[V X']0 =  1 iff r  n  0 /  0, and [A *'10 =  1 iff X* C 0.

14
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As we have pointed, Boolean equation systems have been widely used to 

develop and optimize algorithms for finite-state model checking. Refer to 

Mader’s thesis [78] for an introduction on Boolean equation systems.
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Chapter 3 

Predicate Equation Systems

Predicate equation systems consist of systems of simultaneous equations whose 

right-hand sides are first-order formulas. This chapter defines predicate equa

tion systems and develops a Gentzen-like proof system.

3.1 B asic D ata  Theories

The predicate calculus we consider is parameterized with respect to the basic 

data theory used to specialize the domain of discourse.

D efinition 3.1.1 Let T) be a set of data values and X a set of data variables. 

A basic data theory over X and T) is a tuple (B Exp, "D Exp, fv, (—), |=, | —|), 

where:

1. BExp is a set of data predicates;

2. T)Exp is a set of data expressions;

3. f v : (BExp U BExp) —> 2x is the free-variable mapping;

4. (—) : (BExp U BExp) x 'DExpx  —> (BExp U BExp) is the substitution 

function (notation: b(f) for (—
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5. [= C *DX x 'BExp is the interpretation relation (notation: p (= b for 

M  P,b));

6. | —| : BExp x rDx  —> “D is the evaluation function (notation: \b\p for

i- i (m ;

and such that the following hold.

1- W ) ) ( g )  = b(f  <g),  where

( f  < 9)(x) = <
g(x) if  x  e  domfg) — dom(f) 

f (x)(g) otherwise

\e(f)\p = l e U l / | P ] >  where \f\p is defined by: (\f \P)(x) =  \ f(x)\p.

In (®Exp, T>Exp,fv, (—),[=, | — |), 'BExp is a set of atomic predicates about 

data values; DExp is a set of data-valued expressions; fv(b) the set of free 

data variables in fe; and b(f) is the result applying substitution /  to expression 

b. If p (= 6 then p makes b true, while \e\p is the result of evaluating e in 

p. If {xi , . . .  C X we use the term assignment for the function (x\ := 

e \, . . .  x n '■= en) in DExpx. We often use x  := e to represent an assignment 

and call elements of T>x data states.

S ta te -tran sfo rm atio n  form ulas A state transformation specifies how cur

rent values of variables will be related to new values after the transformation. 

To formalize state transformations, let X' =  {x' \ x  € X} represent the set of 

“primed” versions of data variables. Then a data predicate A e *BExp over 

the variable set X U X' may be seen as the specification of a state transforma

tion. We refer to formulas such as A as state-transition formulas and use A to 

represent the set of all such formulas.

Semantically, state-transformation formulas are interpreted with respect to 

pairs {p, pf) of data states, where p represents the “current” state and (/ the
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“next” state. We write (p, p/) (= A when A is made true by taking the values 

for the variables of X from p and the variables of X' from p'.

Note that the assignment function x  := e actually defines a state- 

transformation formula. We sometime also write the assignment as a7 =  e.

3.2 T he P redicate Calculus

The predicate calculus is used to define the right-hand sides of predicate equa

tion systems. Our account of the predicate calculus is parameterized with 

respect to a set X of predicate variables , a set D of data values, a set X of 

data variables, and a basic data theory B = (*BExp, DExp, fv, (=, | —|) over X 

and D. The formulas are given as follows, where b e  'BExp, X  6 X, i  e  X, 

and A  is a state transformation formula.

<t> ::= b | -ib | 4>\ V fo \ <t>\ A | X  \ 4>[A] \ 3x.<t> \ Vx.<t> (3)

The operators are standard, except for X  and <p[A}. As formulates may contain 

predicate variables, operator 4>{A\, which is usually a meta-operation, may 

be thought of as a generalization of the substitution operation. To define it 

precisely, if p is a data state then define post(p, A) =  {p1 \ (p, p') (= A } to 

be the “post-states” of p after A. Then p (= 4>\A\ holds exactly when every 

post-state (J € post(p, A) satisfies <f> (p' |= (f>).

The definition fdv(<t>) of free (data) variables in <f> is given in the usual 

manner, based on the definition of fv given in the basic data theory; the 

definition fpv(<t>) of free predicate variables is standard. We call a formula 0 

predicate-closed if fpv(<f)) =  0 and closed if fpv(<fi) =  fdv(<j)) = 0. We often call 

formulas generated by the above grammar predicates.

Predicates are interpreted with respect to a data state p and a predicate 

state 8 G (2^‘vpĉ )x mapping predicate variables to sets of data states. We write
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p \=g (f) to denote that formula 4> holds in data state p and predicate state 0. 

The definition is as follows.

p 1=0 b iff p \= b (i.e. wrt basic data theory)

p (=0 ->b iff pY=b

p 1=0 <P i v <t> 2 iff p |= 0 4>i or p |= 0  <p2

p 1=0 <P i a  d>2 iff p [=0 (pi and p \=e <p2

p 1=0 X iff p e  9(X)

p \=o m iff for all p1 6  post(p, A), p' \=g <p

p 1=0 3x.(f> iff for some d € D, p \=e <P[x' = d\

p 1=0 Vx.<f> iff for all d eT ), p (=0 <p[x' =  d]

We use \< p \g  to represent the set {p \ p \ = g  < p } . If a formula <p is predicate-closed, 

then \<f>\g =  \< p \g >  for any 9  and O '; in this case we write \< p \ for this common 

value. Finally, while negation is restricted in the logic, every predicate-closed 

formula (p has a formula not(^) that is semantically equivalent to (p's negation.

3.3 P red icate Equation System s

Predicate Equation Systems (PESs) consist of blocks of equations of the form 

X  = <f>, where X  is a predicate variable and 0 is a predicate. Such a system 

is intended to define a mutually recursive family of predicates, one for each 

equation. Since a given equation can have several solutions, blocks in PESs 

are equipped with an indication as to whether the “least” (most restrictive) 

“greatest” (most permissive) solution is intended.

D efinition 3.3.1 A predicate equation block has form (p ,E ), where p e 
{/x, î } is the parity indicator and E  =  ( E \ , . . . ,  En) is a finite sequence of 

equations of form Xi = (pi, with the X± distinct predicate variables and each (p 

a predicate.
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In predicate block (p, E) p determines whether the “greatest” (v) or “least” 

{ji) solution of the equations is intended. We write \bs(B) = {Xi , . . .  ,X n} 

for the left-hand-side variables in block B  and rhs(B) = {0j , . . . ,  <f>n} for the 

right-hand-side predicates.

D efinition 3.3.2 A predicate equation system (PES) is a finite sequence 

(B \ , . . . ,  Bn) of predicate equation blocks with the property that if  i ^  j ,  then 

IhsiBi) n  Ihs(Bj) = 0.

The notions of Ihs and rhs can be extended in the obvious manner to PESs. 

We call a PES P  predicate-closed if Û erhsCP) f P ^ )  -  I M O -

Exam ple 3.3.3 As an example, we consider the following PES, where the set 

of data variables X =  {x, y}

X Atl = X a ,2 V ((x < 8  —> X At2{ 3 6. 6 > 0 A x '  = x + 5 A y '  = y + 6 

Ax' < 8 A y' < 8 ]) A (y > 5 ->• X B,i[x' = 0]))

 ̂ X A2 — x > 7 

X b , 1 — X b,2 
k X B'2 = X > 7

PESs are interpreted using fixpoints of monotonic functions defined over 

the complete lattice given by 2 ^ ^  (i.e. the lattice of sets of data states, 

ordered by set inclusion). Given a predicate environment 6, a predicate 4> 

containing free predicate variable X  may be seen as a function f g over this 

lattice as follows:

fe{S) =  [0]e[x:=s]-

A complete account of fixpoint equation systems is given in Chapter 2, and 

the semantics of PESs may be seen as an instance of this, where the lattice Q 

is taken to be 2
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Given a “starting” environment 0, the semantics, [P |0, of PES P  is an 

environment O' that, for any equation X  = E  of P, satisfies:

^ ( ^ 0  — \E\$>[x:=e'(,x)]-

and is appropriately extremal. Note that if P  is predicate-closed, then 

[P]e(X) =  [P ]e/(X) for any X  e Ihs(P) and 9, O'. Based on this observation, 

it follows that if ^  is a predicate, P  is predicate-closed, and fpv(4>) C Ihs(P), 

then

Min.= M
for any 9, O'. In this case we write \4>\p for this common value, and if a E \<f>\p 

we represent this notationally as o (=p <j>.

3.4 G lobal A pproaches to  T autology C hecking

Generally speaking, model-checking problems can be solved by proving the 

tautologiness of a logical formula which contains predicate variables from PESs 

(We will show this later). The global approach usually involves computing 

solutions for all predicate variables of the PES.

The iterative strategy for computing the solution to fixpoint equation sys

tems, of course, implies a general approach for model checking. The strategy 

is based on the following technique for computing solutions to basic blocks.

1. Assign each lhs variable the correct extremal value (T for i/, _L for fi).

2. “Iterate” by evaluating the right-hand side of each equation using the 

current assignment to derive a new assignment. Terminate when there 

is no change.

For PESs, this strategy may be realized symbolically in the obvious man

ner: for a i/-block, start by assigning each lhs predicate variable t t ,  then iterate
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by replacing each occurrence of a lhs variable in a right-hand side and com

paring the new expressions with the previous ones. Terminate when there is 

no change. Note that in general, this strategy might not terminate. First, the 

basic data theory may not decidable, so mechanically testing formula equiv

alence cannot be done. Second, the number of iterations needed may not be 

finite.

Traditional global finite-state model checkers use this strategy, as do 

both [32] and [64]. In [32], the authors note that, even though Presburger 

arithmetic is decidable, their procedure is not guaranteed to terminate, owing 

to the second condition above. In contrast, the restrictions in state predicates 

in [64] do guarantee termination.

The paper [45] restricts the allowed form of predicates mentioned in [32] so 

that the only basic comparisons allowed mirror those of [64], albeit for integers 

rather than real numbers. In this case, the iterative fixpoint calculation is 

guaranteed to terminate. This fact, together with the PES formulation of 

real-time model-checking, therefore suggests a novel approach to discrete-time 

model checking. Rather than expand a discrete-time model into a concrete 

transition system (which is detailed in Section 4.1) by “exploding” delays into 

sequence of clock ticks, mirror the definitions of timed-automata /  real-time 

programs, albeit in the setting of integers, then use the symbolic approach here 

combined with the observation of [45] to conduct model checking symbolically.

3.5 A  G entzen-Like P roof System

Significant attention has been paid to local, or on-the-fly, approaches to finite- 

state model checking. In the setting of BESs, this amounts to computing 

the solution of a single (propositional) variable rather than the values of all 

variables. In the case of data-based model checking, on-the-fly techniques have
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received little attention, although in the case of real-time model checking the 

subject is discussed in [96]. In the remainder of this section, we present a 

local model-checking framework for PESs that is based on a Gentzen-style, 

goal-directed proof system related to ones given in [22, 69].

The proof rules operates on sequents of the form: $ \- ip, where $  =  

{4>i,. . .  4>n} is a set of predicate-closed formulas, and V' is a predicate. We 

interpret $  h i[> as the formula / \ $  —► ip. The rules for the proof system 

are given in Figure 2 and follow the following syntactic conventions: <p, (p, 

are predicate closed, while ip,ipi need not be; $, p is short-hand for $  U {</>}. 

Conclusions are also written above subgoals, which are separated by a 

Rules Vi — A are familiar from the predicate calculus; note that instead of left- 

and right- rules for each construct as in [98], we rely on rule S  combined with 

the fact that the not function “drives” negations inside. The remaining rules 

are for the substitution operator and predicate variables.

The definition of strongest postcondition post can be lifted to a set of states 

defined by the constraint $  as follows.

post($, A) = {f / \  {p, p') [= >1 and p ]= $}

and the weakest precondition is defined as the following,

pre($, A) = {p ] {p,p') [= A => p' |=

The rules also share an implicit side condition: they may only be applied 

to non-leaf sequents in a proof. These are defined as follows.

Definition 3.5.1 Let a be a sequent of form $\~P ip. a is a (successful) leaf 

if  one of the following conditions holds.

(1) ip € ‘BEocp or if =  -h  for some b e  'BExp (successful if  \A $  —> ip] = 

V x ).
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V 3

A

0

s

T

3

V

CALL

$  hp Ipi V l/>2 $  hp V’l V V’2
------------------- V2 -------------------

$  I- p  4’i $  hp 1P2

$ h p < ^ v V ’ $  h p tp y  4>
V4<1>, not(0) \-p ip not(</>) hp t/i

<j> hp jy  A 1p2 
$  I- P  l / > i  5  $  l ~ p  t j . )2

<j> hp y>[A] 
post(4>, A) hp V’

Pp V’
$  hp  not(</>) V ip

^ 1  <P >~p i ’
$  h p ip

$ hp 3x4’
$  hp 1p[x'  =  f]

$  hp Vx-V’
$  hp 4>[x' =  y\

3>h P X

(t 6 DExp)

(y a fresh data variable)

$  hp %p
(X  =  ip is an equation in P)

Figure 2: A Gentzen-like proof system for PESs.
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(2) ip € $  (always successful).

(3) ip =  X  with parity p, and there is another sequent a' of form $>' \~P X  

on the path from the root node of the proof to a with the property that 

no a" : <f>" \~P X " such that X " has parity different than p and X " is 

defined in an earlier block in the PES than X , and $  logically implies 

$>'. Such a leaf is successful if the parity of X  is u.

The definition of (successful) leaf is based on the one given in [69], which 

also gives a success criterion for leaves involving //-formulas. This criterion is 

not needed in this work, so we omit further mention of it.

A proof built using these rules is valid if and only if it is finite, every path 

ends in a leaf, and every leaf is successful. The following is true.

Theorem 3.5.2 (Soundness) The proof rules in Figure 2 are sound: if  $  \-P 

ip has a valid proof wrt PES P then 1$ —► ip\P =  “Dx .

Proof: By induction over the derivation of $  \-P ip. The inductive step

involves proving soundness of each rule in the proof system. And for each rule 

of the form
a

® i ) * • *» &n
we have to show that if the soundness hold for each subgoal o \ , . . . ,  <rn, then the 

goal <j is also sound. During the proof, we will also point out the completeness 

if applicable.

The soundness of most of the rules is straightforward;

• Rule V4 is sound and complete since (not(<I> A not(<̂ >)) V ip) =  (not($) V 

(<p V ip)), so are rule Vi, V2, V3.

• Rule S is sound and complete since (not($>)Vnot(0)VVO =  (not($>A0) V^)
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• Rule T  strengthens the proof obligation by weakening the left-hand side. 

It is sound since not(4>) V V’ implies not($) V not(^) V note that this 

rule is not complete.

• Rule [] is sound and complete; Note that the operator ip\A\ actually de

fines the weakest precondition pre(ip, A); The proof follows the definition 

of predicate transformers, and can be found in [94].

• Rule 3 is the standard skolemization technique to eliminate existential 

first-order quantifiers. Skolemization does preserve the satisfiability of 

formulas. This rule is sound and complete.

• Rule V eliminates the universal quantifiers by introducing a fresh free 

variable. It is sound and complete.

• The termination condition in definition 3.5.1 (3) is similar to the case 

of boolean equation systems [39, 78]. The requirement that there is no 

such a X "  with alternative parity is used to guarantee the monotonicity 

of the underlying semantic function. $  =>• indicates that we have 

reached a loop in the proof. Such a loop for predicate variable with 

greatest fixpoint can be identified as a successful leaf according to the 

fixpoint definition. While a loop for least fixpoint means that the proof 

need to continue until condition 3.5.1(1) or (2) is reached. The proof for 

the least fixpoint variable needs the well-founded induction. Interested 

readers are referred to a similar proof detailed in [69]. Note that the 

state space consists of data states in their model checking problems.

■

In general, the proof rules are not complete; proofs may require the appli

cation of T  rule, and the data theory may not be expressive enough to define
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the necessary property. One must also be able to determine the validity of im

plications in the basic data theory. One may identify data theories for which 

completeness does hold.
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Chapter 4 

Transition Systems and the 

Modal Mu-Calculus

In this chapter, we show how model checking can be reduced to computing 

solutions of PESs. The basic approach consists of showing how, given a sym

bolic system model and a formula in the first-order mu-calculus, a PES may 

be generated whose “solutions” are answers for the model-checking problem. 

This chapter lays the foundation for this approach by introducing our sys

tem model, symbolic transition graphs, and our temporal logic, the first-order 

mu-calculus.

4.1 C oncrete Transition System s

Fix a set of data values D, a set of data variables X, and a set A of communi

cation port names not containing a distinguished value r . The set of concrete 

actions .Actc is given as

A c tc = {Aid | A e A,d  eD}U {A?d l A E A j d E D J U l d l d E ^ J u l T } .
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Actions have the usual interpretation: A!d represents the emission of value d 

on port A, and A Id  the receipt of value d on A. r  denotes the internal action.

Definition 4.1.1 A concrete transition system (CTS) is a tuple (E, V —>c 

, £/ ) ,  where E is the set of states, V : E —> T>x the valuation function, —>CQ 

E x A ctc x  E the transition relation, and E / C E  the set of start states.

A CTS models the behavior of a system. We write a A c a' for (cr, a, a'} 6 —>c-

4.2 T he First-O rder M odal M u-C alculus

To specify system properties, we use first-order modal mu-calculus [99] and 

modal equation systems (MESs). The former enhances the predicate calculus 

with modal operators; MESs are like PESs whose right-hand sides of MESs axe 

mu-calculus formulas. Fix basic data theory (BExp, T)Exp,fv, (—), [=, | —|) and 

set A of port names. Then first-order mu-calculus formulas have the following 

form, where e E ©Exp and A € A.

<t> (operators from Equation 3) |

{r)<f> | [r\<f> | (\\e)4> | [A\e\<f> | (A?e)<f> \ [A?e\<f>

The notions fpv axid fdv of free formula /  data variables may be adapted in the 

obvious manner. We call a mu-calculus formula <f> formula-closed if fpv(<j)) =  0.

The semantics of modal mu-calculus formulas is given with respect to a

CTS C = (E, V, —>c, E/), and takes the form of a relation a \=c,e <P, which,

given an environment 9 E (2s:)x mapping formula variables to sets of CTS 

states, determines whether or not a CTS state satisfies 4>. This relation is 

given as follows.
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cr I= c,e b if f  V(a) \= b

a \=C,9 - 6 if f  V{a) ¥= b

cr \=C,9 01 V 02 if f  a | 0 i o r  (= c ,e  02

a \=C,9 01 A 02 if f  cr \=c,9 0i a n d  cr |= c ,e  02

a 1=C,9 X if f  a €  0{X)

a \=C,9 m if f  o \=Cfi pre(0, A)
cr \=C,9 3a;.0 if f  th e r e  is  s o m e  d €  *D, cr \=c,e 4>[x' = d]

a 1=C,9 Vx.0 if f  for a il  d €  2 ) , a (= c ,e  <t>[x' — d]

a \=C,9 <r)0 if f  th e r e  is  o’ s . t .  cr ^>c o' a n d  cr7 \=c<g 0

<7 \=C,9 [r]0 if f  for a ll cr' s . t .  cr c cr7, cr7 \=Cig 0

cr I=£7,0 (A!e)0 if f  th e r e  is cr7 s . t .  cr cr7, \e\V (a) =  d, a n d  cr7 (=Cj9 0

(7 |=C,9 (A?e)0 if f  th e r e  is cr7 s . t .  cr cr7, |e|v(<r) =  d , a n d  cr7 (=ce 0

(7 |=C,9 [A!e]0 if f  for  a ll cr7 s . t .  <7 cr7, |e|v(cr) =  d , a n d  cr7 |= C 0 0

cr \=C,9 [A?e]0 if f  for  a ll cr7 s . t .  cr —>c cr7, |e|v(CT) =  d, a n d  cr7 |= C 0 0

Note that the semantics of the modal operators are different from the ones 

given in [75, 91]. Here, in (A?x)0 the x  in 0 is not bound, while in the other 

work this is the case. Our logic only permits variables to be boimd using V 

and 3. Also note that pre(0, A) defines the weakest precondition of 0 with 

respect to the state-transformation formula A.

We define [0]c,e =  {cr | a  \=c,e 0}- We may now apply the general fix

point equation system theory to define the semantics of mu-calculus equation 

systems. The lattice in question is 2s ordered by set inclusion, the semantics, 

[AfJ c,0 i of mu-calculus equation system M  is an environment mapping each 

X  € Ihs(M) to a set of states that is the appropriate solution for the equation 

defining X .

We also adapt the definitions of predicate-closed-ness from PESs to 

formula-closed-ness in the obvious manner. If MES M  is formula-closed then
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\M \c,o(X) =  \ M\C'ff'(X) for any X  e  Ihs(M) and 9,0', and we write [MJC 

for this value. It also follows that if M is formula-closed and 4> is such that 

fpv{4>) C Ihs(M), then

M i- ic ,  = \4>\[m\C9,

for any 9,9'. When this holds we use [<P]c,m for this value, and we write 

g [=c,Af <t> if g €

From  C TL to  M ES The first-order modal mu-calculus we introduced are 

expressive enough to encode the CTL-style temporal formulas [85]. To provide 

the translation, we can take use of the standard fixpoint characteristics of 

temporal operators. Assume the CTL formulas axe in positive normal form,

i.e. all negations have been “pushed” inside formulas until they reach atomic 

formulas. Then it is sufficient to give accounts of the following formulas [43].

A(<t>\Wfa) = uX.{4>2 V (0! A [r]*))

E ifo W fc) = v X . fa  V (</>! A <t)X))

A(<f>\U4>2) =  V (<f>i A [t \X  A (r)tt))

E fa U fa ) = nX.(<t>2 V (</>! A (t )X))

In the above, A and E  are the universal path quantifier and the existential path 

quantifier respectively; W  is the “weak” path operator, and U is the “strong” 

path operator. A state s satisfy AfyiU fa) if along every computation path 

beginning with s, <f>\ holds imtil fo  does; A state s satisfy A(4>\W<fo) if either it 

satisfy A(<piU<f>2), or when (f>2 does not necessarily hold, <f>i holds everywhere.

Note that the translation is linear-time and does contain only internal 

communication actions since CTL does not distinguish communication events.
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Example 4.2.1 4 s  an example, we consider the first-order CTL formula 

AF(x > 7), the corresponding MES is the following.

X x =  X 2 V [t ]Xi 

X 2 = x > 7K.

4.3 Sym bolic Transition Graphs

Our symbolic system model, Symbolic Transition Graphs(STGs), extends the 

STGA formalism of [75] with state transformation formulas. This extension 

enables STGs to encode a range of other symbolic system formats, including 

the value-passing CCS in [42], Linear Process Equations [59], the event-action 

language in [32], and timed automata [64].

Fix value set T), variable set X, and data theory ('BExp, DExp,fv, (—), ]=,- 

|—|) over V  and X. Let $  be the associated set of predicate-calculus formulas. 

Also fix a set A of communication port names not containing the distinguished 

name r , and define the set of symbolic actions

Acts =  {A?i | c € A, x  G X} U {Ale | c € A, e € DExp} U {r}.

Then STGs are defined as follows.

Definition 4.3.1 An STG is a tuple G  = (S , R, S j , InitG), where:

1. S  is a finite set of control locations;

2. f l C S x $ x A x  A cts x S  is a finite set of transitions.

3. Sj C S  are the initial locations; and

4. InitQ € "BExp is the initial condition.

In STG G =  (S', R, S}, InitC), 5/ contains the possible starting locations and 

InitC the initial condition on data variables. Based on the current control
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location and data state, transitions may fire, with data variables and control 

locations being updated.

With this intuition in mind, let us more closely examine the structure of 

transitions in an STG. Each transition is a tuple (s, 0, A , a, s'), where s and s' 

are the source and target control location, respectively. 0  determines when the 

transition can “fire”; a state transformation formula A update data variables; 

and a communication action a.

Semantically, an STG G =  (S , R, 5/, InitC) is interpreted as a CTS Cg =  

(E, V, —>c, £ /) as follows.

1. E = S x  D x . Note that in (s, p), p provides values to the data variables.

2. V((s,p)) = p.

3. (s,p) -̂ *c (s ',//), iff there is (s ,0, A, a ,s ')  6 R , and p" with:

(a) p \= 0, p" e  post(p, A), and

(b) either:

i. a = r  and p' =  p"; or

ii. a = Aid, a  =  Ale, \e\p =  d, and pi =  p"; or

iii. a = A?d, a = \?x, and p' =  p/'[x' =  d}.

4. <tj =  {(s/,p) | Sj G S/ ,p (= Inite}

E xam ple 4.3.2 yls an example, considering the simple STG in Figure 3, 

where the set of data variables X  = {x, y}.

STG s and  th e  M u-C alculus. The definition of Cg implies an immediate 

interpretation of the mu-calculus with respect to STG G. In addition to the 

other notations defined for the mu-calculus, we also introduce the following.
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> 0 A x '  =  x  +  8 A y '  =  y  +  8 Ax '  <

Figure 3: A simple symbolic transition graph

Let 0 be a mu-calculus formula, and s a control location in STG G, and let 6 

be a mapping of mu-calculus formula variables to sets of states in CG. Then

I^le(s) =  {p | {s ,p ) € [(j>\cG,e}-

That is, the “semantics” of a control location s vis a vis a formula is the set of 

data states that, when combined with s, make the formula “true”. Similarly, 

if M is a formula-closed MES, and 0 is a mu-calculus formula with fpv(4>) C 

Ihs(M), we write [^lc,Af(s) for {p \ {s ,p) € \4>\cg,m }- In this case, we also 

say that a STG G satisfies a mu-calculus formula <f> with respect to equation 

system M  (written G (=at (f>) if for all S/ G 5/, {p | p (= InitC} C [^ |G,Af (s/).

4.4 From M odel C hecking to  PE Ss

The model-checking problem for STGs is: given STG G , formula-closed MES 

M  and X  € Ihs(M), does G \=m X?  This section shows how to translate this 

question into an equivalent one involving PESs.

The key problem to be addressed is the symbolic representation of the set 

[A]]g,m(s/) for every s/ € Si. This is achieved by constructing a PES equation 

for each state in G and equation in M. Formally, we define a function F  that, 

given a STG G and formula-closed mu-calculus equation system M, yields a 

predicate-closed PES F(G,M).  F is applied on a block-by-block basis; that
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is,

F(G,  <£, , . . . ,  Bn)) = (F(G, B 1) , . . . ,  F(G, Bn)).

While F(G, B) =  F(G, {p, E)) in turn yields a predicate equation block of 

form (p, £ '), where for each equation X  = <j> in E  and control location s in 

G, there is an equation of form Ys X = F(s, <f>) in E'. F(s, (f>) is defined in 

Figure 4.

Exam ple 4.4.1 An as example, the PES given in 3.3.3 is generated from the 

STG 4-3.2 and the MES 4.2.1.

Lem m a 4.4.2 Let G = (S, R, Si, InitC) be an STG with the interpretation 

Cg =  (£, V, —>c, £/),  and M  a closed MES; Let 6 be a mapping of mu-calculus 

formula variables to sets of states in Cg, O' be a mapping of predicate variables 

to sets of data states; I f for any X  e  lhs(M) and any s G S, 6(X)(s) = 

Ol{Ys,x), then for any 4’, we have =  [F(s, ip)\e>

Proof: The proof proceeds by structural induction on the formula 4 ’-

For the base case, [.Y]e =  [Ys<x\e> =  |F (s, VOl#'- 
Most cases are routine; We consider here the case when ip is (r)V’- 

A data state p £ [(T)y’Ie(s) if only if there is a transition (s, [3, A, r , s’) £ R, 

p \= 0  and post(p, A) £ [V;l«(s/)) since [y>le(s') =  [F (s ',^ )]0' (the inductive 

assumption). we have

P He' V ^ A F{s',ip)\A\ | (s, 0, A, r, s') £ R}.

It follows that

l(T)ip]e(s) = [\/{/3 A F(s',4’)[A\ \ (s , 0 , A , r , s ') £ R}]6'

= [F(s, {t )iP)\o>

■
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F{s,b) =  b

F(s, -ib) =  ->b

F fa fa V fa )  = F(s, (f>i) V F(s, fa)

F(s,<fri Afa)  = F(s, (pi) A F(s, fa)

f ( s , x )  =  n ,x

F(s, 3x.(p) = 3x.F(s,(f))

F(s,Vx.<f>) = Vx.F(s,<j))

F(s, <p[A\) = F ( a ,0 P ]

F(s, (r)<t>) = \ / { 0 A  F(s', 4>)[A] \ (s, 0, A, r, s') € R}

F (s , [t \4>) =  / \{ 0  -► F(s', <j>)[A) | (s, /?, 4̂, r, s') e  F}

F(s, (c\e)<f>) = \J{0AF(s ' ,<t>)[A}\ ( s ,0 ,A,a , s ' )eRA(a = c\e)}

F{s,[c\e\<f>) = f \{ 0  -► F(s',<l))[A] \ (s,0, A, a, s') e R A (a = c\e)}

F(s,(c?e)<p) = \J{0 A F(s',4>)[A}[3/= e] \ (s ,0,A,a, s ' )  E R A a  = clx}

F(s, [c? e] 0) =  A {P “ *• =  e] | ( s ,0,A,a, s ' )  e  R A a  =
c?x}

Figure 4: Translation function for PESs
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Theorem 4.4.3 Let G =  (S, R, Sj, InitG) be an STG, and let M  be a closed 

MES. Then for any s € S  and any X  e  //js(M), p f ]G,Af(s) =

Proof: The proof proceeds by establishing the connection between the

semantic function for MES and the generated PES.

Suppose X =  { X u . . . ,  X„} are the formula variables in M , X is the set 

of data variables and T) is the data domain. Let S  = {si , . . . ,  sm}. Then the 

semantic used to interpret M  is given by /  : (S  x T)x)x —> (5 x *DX)X; Since 

for each X  e  X and s e S ,  F(G , M) will generate a predicate variable YsX for 

the PES, the semantic function for the PES is given by g : (DX)Y —> ('DX)Y, 

where Y =  {V*iX I s G S, X  € X}. Let a be the parity of the block, then the 

fixpoint o f  encodes the solution to each formula variable in the MES and ag 

contains the solution to each predicate variable in the PES.

For each semantic set Xi : S  x D x, we construct a set Ys Xi ■ {d \ 

{x,d) € Xj}. Then the input ( X i , . . . , X n) to function /  becomes the input 

(Y.uXl , - - - ,YsuXn, - . . ,  y;m,Xl, ■ • ■, X5miXJ  to fimction g. Given one solution of 

/ ,  we can construct the solution for g and the vice versa. We can conclude 

that the relationship between the solutions of the two semantic functions as 

illustrated by Figure 5.

a f ( X u . . . , X n) = (aXu . . . , a X n)

• 1 Psm.XT,)

Figme 5: The relationship between the two semantic functions
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4.5 F in ite-S tate  M odel Checking w ith  P E Ss

As mentioned in the introduction, BESs play a central role in model checking of 

finite-state systems. These equation systems resemble PESs; the key difference 

is that BESs contain prepositional, rather than predicate variables. Each such 

variable represents whether or not a given state in a system satisfies a given 

temporal formula.

For finite-state systems, our PES-generation procedure returns BESs. To 

illustrate this, we consider system descriptions given as CTSs as described in 

Section 4.1, where there is exactly one data value, d, and formulas are given in 

the equations! prepositional mu-calculus (MESs without quantification whose 

only data expression is the constant d).

Formally, define the sets T) = {d} and X =  {x}; the basic data theory we 

use takes ®Exp =  {tt} and DExp =  {d}; the function fv returns 0 for any 

argument, (—) is trivial, and a |= tt  holds always and \d\a =  d for any a. Note 

that the set T>x  =  {a} contains exactly one element.

Given these definitions, a CTS C  may be encoded as a STG Pc . The control 

locations of Pc are exactly the states of C, and data variable x is needed 

because input transitions need an assignable variable. For each transition 

s —> s' in C, we generate a transition of the form (s ,t t ,x ' =  x, a, s'), if 

a € {r, Aid}, and (s, tt, x1 =  d, A?x, s'), if a = A Id. The initial control locations 

are the initial states of C, and InitC =  tt. It is easy to see that the CTS where 

the semantics of STGs associates to Pc  is isomorphic to C.

Since the equational prepositional mu-calculus is a sublanguage of MESs, 

our PES generation procedure may be applied to Pc and an equational system 

M. All quantifiers can easily be eliminated from the resulting PES. Moreover, 

since D x contains only a, the semantic lattice for predicates consists of two 

elements: {a} ( “true”), and 0 ( “false”). Each predicate variable may thus be 

seen as a prepositional variable, and the PES is isomorphic to a BES.
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Using a similar encoding, Mateescu’s parameterized boolean equation sys

tems [81] can be regarded as instances of our PESs.
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Chapter 5 

Real-Time Model Checking 

with PESs

This chapter shows how PESs can be used to encode (parametric) real-time 

model-checking problems. In this setting, systems are modeled as (parametric) 

timed automata and properties are specified with real-time modal mu-calculus. 

An efficient on-the-fly (parametric) model-checking algorithm is developed by 

providing specialized proof rules.

5.1 Param etric T im ed A utom ata

Real-time systems are often modeled as timed automata [2], For the conve

nience of statement, we use parametric timed automata to model both non- 

parametric and parametric real-time systems. We began by introducing some 

terminology and notation.

Throughout let C  be a finite set of clock variables ranging over x, y , . . . ,  Act 

a finite set of actions (transition labels), 7  a finite set of parameter variables 

ranging over a, 6 , . . . ,  and a, (3 linear terms defined over 7  and integer constants 

in the usual way: each has form n  + JT  r^a, where n and each n< are integer
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constants and each a, € 7. The set of state predicates is defined by the 

grammar.

(fis := a  ~  P | x ~  q | x — y ~  a  (4)

where ~ e  {<, <, =, >, >}. A parameter may assume any value in a fixed finite 

set of integers V (in practice different parameters would have different domains, 

but for simplicity in this paper we assume a single domain of possible values 

for all parameters). We write the set of state predicates as 4>. Throughout we 

let T> = R+ U {0} be the set of possible durations and X =  C U 7.

A parameter valuation is a mapping u  e  V3’ (recall that V7 is the set 

of mappings from 7  to V) that assigns a value to each parameter. Given 

a parameter valuation u, a system state p e  D x satisfies: p(a) = ui(a) if 

a E 7. If p is a system state and 5 6 7) then p + 5 is the new state p[x\ := 

p(xi) + S, . . . ,  xn := p(xn) + J], which updates each clock variable Xi with a new 

value p(xi) + 8 and agrees with p otherwise. State predicates are interpreted

with respect to system states in the usual fashion; we write p (= ip when this

is the case.

D efinition 5.1.1 A parametric timed automaton (PTA) is a tuple T  = 

(S, R, L, Si), where:

1. S  is a finite set of control locations;

2. R  C S  x $  x 2C x Act x S  is a finite set of transitions,

3. L E is a mapping that assigns to each location a state predicate, called 

the invariant for that location, in 4>;

4■ Si Q S  are the initial locations

Intuitively, time can elapse in a location only as long as its invariant remains 

true; when the current location is s, a transition (s , ip, C, a, s') may be executed
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when the trigger condition ip is satisfied, with the clocks in C  being reset to 0 

and control location switched to s'.

Semantically, given a parameter valuation u> G V7, a parametric timed 

automaton T =  (S , R, L, S'/) can be interpreted as a concrete transition system. 

Given u  and T, CTS C ^T =  (£, V, —>c, E/) is defined as follows.

1. E =  {(s, p) G S' x T>x  | for each a 6 IP,p(a) =  u>(a)}.

2. V((s,p)) = p.

3. There are two types of transitions in CT.

(a) Time advance: (s, p) —>c (s,p') for 6 G K iff for all 0 < 5' < 8, 

p + 6 ' ^ L ( s ) .

(b) Transition firing: (s, p) -̂>c (s', p/) iff there is (s, <p, C, a, s') G R  

with: p (= L(s) and p f= <p and f! =  p[C := 0]

4. a i =  {(s/,p) | si G S I } p  \= L(si) and p(x) =  0 for each x  G C}

t t ;  y := 0 ;r

z < a; z := 0 ;r

Figiu'e 6: A parametric timed automaton with two clocks

Exam ple 5.1.2 Consider the parametric timed automaton of Figure 6 with 

two clocks. The clock y gets set to 0 each time the system switches from location 

S0 and S i . The invariant y < 2 and y < 1 ensures that the switch from Si 

happens within time 2 and from S  ̂ within time 1. Parameter a specifies the 

upper time limit over clock z when the transition from S 2 happens.
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5.2 T he R eal-T im e M odal M u-C alculus

The real-time modal mu-calculus [96] can be used to specify system properties. 

We define formulas with MESs , which consist of blocks of equations of the 

form X  =  0, where X  € X is a formula variable and 0 is a formula defined by 

the following grammar.

0 ::= | 0i V 02 I 0i A 02 | (a)<f) | [a]0 | 30 | V0 | x.(j) \ X

In the above, a £ .Act is an action while x € C is clock. Operators (a)<j> and 

[a\<f> are called modal operators; these, together with V and A, are standard 

from the propositional modal mu-calculus [72]. <p, is a state predicate; x.0 is 

a reset operator; and 30 and V0 allow us to reason about time successors of a 

state.

The semantics of the real-time modal mu-calculus formulas is given with 

respect to a CTS C  =  (£, V, —>c, £ /), and takes the form of a relation o \=c,e <t>, 

which, given an environment 6 : X t—► 2E mapping formula variables to sets 

of states, determines whether or not CTS state o satisfies <f>. This relation is 

given as follows.

o-]=c,e<Ps iffV(a)(=y?s 

<7 \= c,e  x  iff a  G 0 { X )

o  N c.e 0 i V 0 2  iff o  \= c,e  0 i or o  N c,e 0 2

o  ]= c , 0  0 i  A 0 2  iff o  j= c ,e  0 i  and a  \= c,e  0 2

<7 (=c,fl 30 iff 3d S.t. <7 —>c o '  h o '  I= C fi 0

o  |= c ,e  W> iff s.t. a  —>c o '  o '  \= c,e <t>

o  (=c,e (a)0 iff 3a' s.t. a  A c a ' A a ' (=c,e <t>

o  \= c,e  [a]0 iff Va' s.t. a  A c a ', o '  \= c,e  0
a  (=c,9 x.<f> iff a  (=Ci9 0[x — 0]

43

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



www.manaraa.com

We define \<j>\c,0 =  | a \=Clg 4>}- We may now apply the general fixpoint-

equation system theory to define the semantics of MESs.

Exam ple 5.2.1 As an example, the following MES states that “after perform

ing the gate down action, it is always possible to raise up the gate within 5 

units of time” [96].

( Y =  V[—]V A V[down]z..Y 

y X  = 3(up)(r < 5) V (V[-up]X A 3(—up)tt)

The notation [—] is a shorthand for Aae/ictM; while [—up] stands for 

Aae^rf-{up}N and (-up ) /or VaeAd-{uP}(a)- Intuitively, [-up]<£ holds of a 
state if every action transition labeled by something other than up leads to a 

state satisfying 4>.

The real-time modal mu-calculus is expressive enough to encode many 

timed temporal logics, including TCTL [64] . On the other hand, it can be 

easily encoded by the first-order modal mu-calculus defined in Section 4.2. 

Note that operator x.(f> can be encoded as <f)[x' =  0] and V<̂> can be rewritten 

as VJ > 0.(f>[x := x  + tf].

The definition of CuT  implies an immediate interpretation of the mu- 

calculus with respect to PTA T. In addition to the other notations defined for 

the mu-calculus, we also introduce the following. Let 0 be a mu-calculus for

mula, and s a control location in PTA T, and let 6 be a mapping of mu-calculus 

formula variables to sets of states in Cu>t . Then

\4>le(s) = {p | (s,p) 6 \<f>]cUtT,0 for all w}.

That is, the “semantics” of a control location s vis a vis a formula is the 

set of system states that, when combined with location s, make the formula 

“true” , regardless of the parameter assignment ui. Similarly, if M  is a formula- 

closed MES, and 0 is a mu-calculus formula with fpv{<})) C Ihs(M), we write
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[0]T,Af(s) for {p | (s ,p ) G \4>\cUtT,M for all u}. In this case, we also say that 

PTA T  satisfies a mu-calculus formula 4> with respect to equation system M  

under initial (state-predicate-specified) condition <p (written T  (=^ <f>) if for 

all Si € Si, {p | p \= tp} C |<^Jt,m(s/).

5.3 From R eal-T im e M odel C hecking to  P E Ss

The universal parametric model-checking problem may be phrased as follows: 

given a PTA T, formula-closed MES M  and X  G Ihs(M), and a constraint 

over parameter and clock variables, does T  (=^ X ?

This section shows how to translate this question into an equivalent one 

involving PESs. The translation is an customization of the general PES- 

generation procedure. The key problem to be addressed is the symbolic rep

resentation of the set [.A]TiM(s/) for every s/ G 5/ in the parametric real-time 

settings. Again, this is achieved by constructing a PES equation for each loca

tion in T  and equation in M. Formally, we define the function F  that, given a 

PTA T  and formula-closed mu-calculus equation system M, yields a predicate- 

closed PES F (T ,M ). And F  is applied on a block-by-block basis; that is, 

F(T, (£ ? !,...,£ „ )) =  (F(T, B O ,...,  F(T, £?„)). F(T ,B ) = F (T ,(p ,E )) in 

turn yields a predicate equation block of form (p, E'), where for each equa

tion X  = 4> in E  and control location s in T, there is an equation of form 

YSix  =  F(s, <f>) in E'. F(s, <f>) is defined in the following.
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F(s, Vs) = Vs
F(s,<pi V (f>2) = F(s,<£i)V F(s,<f)2)

F(s, (f>\ A <f)2) = F ( s ,^ ) A F ( s > 2)
F(s, X ) = Y.pc
F(s,3<t>) = 3d > 0.(F(s, <f>)[x := x  + d])

F(s,V<t>) = Vd > 0.(F(s, <(>)[x := x  + dj)

F(s,x.<j)) = F(s, 4>)[x := 0]

F(s, (a)(t>) = V{ V A (F(s', <t>)[C := 0]) | (a, <p, C , q, s ') e R }
F (s , [a](f>) = A{ V -  (F(s',(f>)[C := 0]) | (s ,tp ,C ,a ,s’) e  R  }

T heorem  5.3.1 Let T  = (5, R, L, S j) be a PTA and let M be a formula-closed 

MES. Then for any s e  S and any X  e  lhs(M), \X \TM (s) — [VSix1f(t, my

Proof: As an instance of the generic translation to the real-time domain,

Proof proceeds in the same way as Theory 4.4.3. ■

It follows that T  \=̂ M X  iff the statement T)x =  [y> —> AS, e s,  Ys, ,x \ f (t ,m ) 

is true.

Regions Alur et al. [3] defined an equivalence relation on the state space 

of an automaton that equates two clock states if they agree on the integral 

parts of all clocks values and on the ordering of the fractional parts of all clock 

values. Let 6 € V , then 6 = |_<SJ + frac(6), where |_(̂ ) is the integral part 

and frac(6) is the fractional part of 6. For each clock x  € C, let cx be the 

largest integer such that x  is compared with in the PES. Given a parameter 

valuation, the region equivalence relation =  is defined over the set of all clock 

states. For two clock state p\ and P2 , P\ — Pi iff all the following conditions 

hold,
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1. For all x  € C, either [Pi(x)J and [/?2(x)J axe the same or both p\(x) and 

P2 (x) exceeds cx;

2. For all x, y with p(x) < cx axid p(y) < Cy, frac{p\(x)) < frac(p\(y)) iff 

frac{p2(x)) < frac{p2 (y))-,

3. For all x  with pi(x) < cx, frac(pi(x)) =  0 iff frac(p2 {x)) = 0.

Given a parameter valuation, a clock region is an equivalence class of system 

states induced by such an equivalence relation. Note that the number of clock 

regions is limited by an upper bound, n! x 2" x FLec^c* + 2), where n is the 

number of clocks.

Exam ple 5.3.2 Figure 7 illustrates the region equivalence for two clocks x 

and y with cx =  3 and Cy =  2. There are 12 comer points, e.g. (1,1); 30 open 

line segments, e.g. 1 < x < 2 Ay =  1; 18 open regions, e.g. 1 < x < y < 2.

-»■
x2 30 1

Figure 7: Clock regions

Clock Zones Given a parameter valuation lj € VT, a clock zone is a set 

of clock states described by finite conjunction of state predicates. If the PES 

has n  clocks, then a clock zone is a convex set in the n-dimensional Euclidean
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space. Clock zones improve the region construction by considering only the 

convex union of clock regions.

5.4 O n-the-F ly R eal-T im e M odel C hecking

This section introduces a goal-directed proof system, which is customized from 

the general proof system, for the solving of universal parametric real-time 

model-checking problem based on PESs. The proof system is intended to 

establish when a set of predicate-closed formulas $  =  {4>\, . . . ,  <pn} implies a 

formula ip containing predicate variables from a PES. The proof rules operate 

on sequents of the form $  hp ip; & valid proof of such a sequent indicates 

that [ / \ $  —► ip\p =  T>x  (i.e. the implication is a tautology). The rules are 

given in Fig. 9 and use the following syntactic conventions: Conclusions are 

also written above subgoals, which are separated by a ■ <P, <pi, <p, s, s' are 

predicate closed, while ip,ipu need not be, and $,<p is short-hand for $  U {<p}. 

Also note that s, s' are placeholders, whose meaning will be clear later.

Let <p be a predicate-closed formula and A = [x := e] an assignment. Then 

the strongest postcondition, post(<£, A), of <p wrt A is defined as

post(0,x := e) =  3u.(x =  (e[x := v)) A <p[x := u])

Note that <p hp ip[x := e] is valid if and only if post(0,x := e) implies ip. The 

weakest precondition pre(4>, A) is defined as

pre(<£, x := x  + 6) = Vv.(v = x + 6) —> <p[x := u]

We also have two derived operators,

• suct(<p) = 3<i.post(0, x  := x  + J), time successor of (p.

• pret((p) = 36.pre(<p, x := x + 6), time predecessor of (p.
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y

X

y

X

Figure 8: The graphic representation of pret((f>) and suct((f>)

Rules Vi-CALL are familiar from our general Gentzen-like proof system. 

Instead of a rule T  and a cut rule [22] for the reasoning of case splittings like 

the following,
<J> h  p ip

$  bp <f> ; $,</>!~ p  ip

(which in general can not be automated), we defer the computation of these 

predicates by introducing placeholders for them in Rule V and Rule and us

ing a “backward” analysis of the proof tree to infer values for these placeholders
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$  b p  V>1 V j i  2

$  bp ipi
$  f-F V tp2

$  b p  lp 2

$  b  p  ( f> y  ip $  b  p  Ip \ /  <p

$  b p  V’l A V'2 CALL
b p  ip i  ; $  b p  ip2

, $ b p  t/>i V V>2
3>, s b p ^ i  ; $ , -is bp ip2

, $  b p  V6. ip[x : =  x  +  d]

1 SUCt($)  b p  Ip

$, s bp V8. ip[x := x  +  <J]
2 —  — 

suct($), s' b p  ip ; sucf($ A s) b p  st

 $  b p  pret(rp)________
1 suc*($), s b p  ^  ; $  b p  pre t {s)

$ , s \ - P p r e t (ip)
12 -----------------------------------------------------------------------------------------------------------------

sitQ($>), s' bp ip ; s bp p re t(s')

$  b p  tp[A]

1 pOSt($, A )  bpXp

$ , S  b p  1p[A\
2  ■

post(3>, A ) ,  s' b  p i p  \ s  b p  pre(s', A)

LEAF <I>, s bp ip ,ion, s =  false

Figure 9: A local approach for parametric real-time model checking.

if $  —> ip a tautology, 

otherwise

def ^s = true

def
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(see Rules 32, V2, []2). This strategy is inspired by the splitting technique used 

in [96].

Rule V distributes the proof obligation into two subgoals by introducing 

a placeholder s in the left subgoal. The splitting constraint s is first com

puted through the left subtree and then the negation of s is fed into the right 

subsequent. For example, in Figure 10, s might be x < 4.

Rule 3i eliminates the existential quantifier by introducing a placeholder. 

The right subsequent is used to tell the validity of the splitting s derived from 

the left subtree. For example, in Figure 11, s might be the shaded region.

y

0 4 X

Figure 10: Example for rule V

Rules V2, 32 and []2 all have a right subgoal which is used to compute the 

weakest splitting constraints s from s'.

The rules also share an implicit side condition: they may only be applied 

to non-leaf sequents. These are defined the same as Section 3.5 for the general 

Gentzen-like proof system.

Lem m a 5.4.1 We have the following implication hold,

pret(s) A $  => pret(s A sitQ($))
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y

o 3 4 X

Figure 11: Example for rule 3i

Proof: The proof proceeds as follows.

pret(s) A $  =3<5.pre(s, x := x + d) A 4>

= ( p r e ( s , x x + Si) V ■ • • V pre(s,x := x + Sfj V • • •) A $

=(pre(s, x  := x + Jj) A 4>) V ■ • • V (pre(s, x := x + 6i) A $) V • • •

=(pre(s, x  := x + <5i) A pre(post($, x := x  + Ji), x := x + Ji)) V • • ■

=pre(s A post($,x := x  + 6i),x  := x + tfi) V • • •

=>pre(s A 3<5.post($, x x  + d), x := x  + di) V • ■ ■

=pre(s A suct($),x := x + <5i) V • • ■

=pret(s A siiCt(4>))

■

Figure 1 2  illustrates the Lemma with 3 cases. In each case, the shadowed 

region at left-hand side graph represents pret(s) A 4>, while the shadow at the 

right-hand side is pret(s /\suct($)). In (a), both sets are empty; in (b), $  and 

s are joined, while in (c), $  and s are separated.

Theorem 5.4.2 (Soundness) / / \-P 4’ has a valid proof, then [/\ —>■

4>\p =  ® x .
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y

Phi

X

y

Phi

X

y

Phi

x

y

Phi

x

y

Phi

x

Phi
s Hr

Figure 1 2 : Examples for lemma 5.4.1
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Proof: By induction over the derivation of $  bp ip. The inductive step

involves proving soundness of each rule in the proof system. And for each rule 

of the form
a

( T \} . . . , (7n

we have to show that if the soundness hold for each subgoal o \ , . . . ,  an, then 

the goal cr is also sound.

The soundness of most of the rules is straightforward;

• The soimdness of rule Vi — A, rule CALL and rule []i is obvious.

• Rule V is sound because -i$ V -is V ip and V s V ip imply - 1$ V ip.

• Rule V! is a bit more complicated. It depends on a derived sound and 

complete rule
<f>l V <t>2 bp ip 

<t> 1 bp V’ ; (f>2 bp i>
The left-hand side of the sequent 3J.post(<£, x := x+ J) b F ip is an infinite

disjimction. So the sequent is equivalent to a list of subsequents 

post(<£,x := x  + 6\) bp ip ; . . . ;  post(0 ,x  := x  + Sn) h P t/j 

Since the completeness of mle []i, this list is equivalent to 

<f> bp ip[x := x + <Ji] ; . . . ;  <f> h P 4>[x := x + <J„]

Prom the completeness of rule A, we have

<f> bp \p[x := x + <5i] A . . .  A ip[x := x + <Jn] 

which is equivalent to

<{> bp V<5.i/)[x := x + (5)

• The soundness of Rule V2 follows rule Vi. Since from suct(<t> A s) bp 

suct($)/\s' and suct($) As' b P ip, we can conclude that suct($As) hp tp.
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• Rule 3, is sound. The proof depends on the Lemma 5.4.1, pret(s') A4> => 

pret(s' A 5 UCt($)). And from s A suct($) hp tp we can infer that

pret(s A suct($)) \-P pret(tp).

Then we have

pret(s) A 4> =£> pret(xp).

Combining with 4> hP pret(s), the target sequent holds

$  \-P pret( i’)

•  Rule 32 is soimd. The proof depends on the Lemma 5.4.1, pret(s') A =>• 

pret(s' A suCf(4>)) .  And from s' A suct($) hP rp we can infer that

p ress ' A suct(4>)) hP -pre^xp).

Then we have

press') A 4> => pret(xp).

Combining with s h P press'), the target sequent holds

4>, s \-P pret(xp)

• The soundness of rule []2 can be reasoned as follows. From s hp pre(s', A) 

we have post(s, A) \-P s', which together with post(4>, A), s' \~P xp let us 

get post(4>, A) A post(s, A) \~P ip. We then have the following sequent 

hold,

pre(post(4>, A) A post(s, A), A) \-P xp[A\.

Since pre operation can distribute over conjunction, we get,

pre(post(4>, A), A) A pre(post(s, A), A) \-P ip[A\.

Finally we have,

$  A s \-p xp[A\.
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• Rule LEA F is used to generate the initial splitting constrains. When 

$  bp ip is a tautology, the weakest splitting s is t t ;  when $  \~P ip is a 

contradiction, the weakest s is ff; otherwise we can simply set s as <p, 

note that is a predicate-closed formula. Then s is propagated back to 

enable the computation of previous splitting constraints.

■

In general, the proof rules will not be complete for arbitrary paramet

ric model-checking problem. However, when the PES is generated from a 

(parametric) timed automaton and a (parametric) timed mu-calculus, and all 

parameters take values from finite sets, the completeness does hold. The proof 

follows from the finiteness of the number of different regions in the systems [3] 

and an argument for fixpoint approximation similar to [64, 69).

5.5 Im plem entation

We have implemented a prototype, which we call CWB-RT (Concurrency 

Workbench - Real Time), of the above-mentioned algorithm. For the non- 

parametric version of the algorithm, we implemented the difference bound ma

trices (DBMs) [50] to represent state predicates; while for the parametric ver

sion, we implemented the parametric difference bound matrices (PDBMs) [6 6 ] 

package. C++ was used as the implementation language.

Difference Bound Matrix Given a parameter valuation, clock zone can 

be efficiently represented using matrix. Suppose the PES contains m  clocks 

X \ , . . . ,  x m, then a clock zone can be encoded as a (m + 1) x (m +  1) square 

matrix M  whose indices ranging from 0 to m and whose elements belong to 

{{<, <} x Z} U {oo}. For each i, the entry Mq, encodes the lower bound of 

the clock Xi,  while the entry Mi0 specifies the upper bound of the clock x t.
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The element Mitj , for 0 < i , j  < m, encodes the constraint x, — x3 < c if

(<,c) is the entry and Xi — Xj < c if (< c) is the entry. If the entry for Mitj

is oo then no boimd is specified for the difference of x, — xr  Bounds can be 

ordered naturally as follows. Let {< ,<} and < be strictly less than <, 

(^i d) < ( ^ ' ,d ') iff d < d! or d =  d1 and The semantics of a DBM M,

written as [Mj, is defined as the set of clock valuations that satisfy the clock 

zone represented by the matrix. We call M  is satisfiable if [M\ is nonempty.

Exam ple 5.5.1 Considering the clock zone

(1 < Xi) A (x2 — Xi < 0) A (xi -  x 2 < 1) A (x2 < 2)

which is represented by two matrix in Figure 13.

Matrix M' is obtained from matrix M  by tightening all the constraints. 

Such a tightening can be computed by the Floyd-Warshall algorithm [1], Its 

time complexity is 0 (m3), where m is the number of clocks. Matrix like 

M 1 with tightest possible bounds are called canonical. Two canonical matrix 

M, M ' represent the same constraint iff Mi7 =  Af/- for all 0 < i, j  < m. W hat’s 

more, if Mi3 < M[2 for all 0  < i, j  < m, we can conclude that the two zones 

M  C M'.

Since it is expensive to compute the canonical form of a matrix, it is desir

able to make frequently used operations over DBM preserve its canonicity.

• The em ptiness(M ) operation is used to detect consistency of a DBM,

i.e. to test whether M  is satisfiable. The most efficient way to determine 

emptiness is to detect whether there exists a clock difference whose upper 

bound has a smaller value than the lower bound in the canonical form.

• The conjunction(M , M') of two clock zone M, M ' can be computed by 

(M A M')ij =  min(Mij, M[-), for all 0 < i, j  < m.
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1 2 X

M Xo X\ x2
x0 ( < , 0 ) K - i ) 00

X\ 00 ( < . o ) (<, 1)
x 2 ( < )  2) ( < , o ) ( < o )

M' Xo X\ x 2
Xo (< ,0 ) ( < , - ! ) (< ,0 )
X\ (<) 3) (< ,0 ) ( < , 1)
x2 (< ,2 ) « , 0 ) ( < 0 )

Figure 13: Representation of a clock zone

The suct(4>) operation preserves the canonical form. This is because 

clock difference remains the same as time elapse, lower bounds do not 

change either, while upper bounds have to be pushed to infinity. Thus 

for a canonical representation of matrix M, suct(M) is computed by 

setting the upper bound on each individual clock to oo.

The pret((f)) can be computed by setting all the lower bounds on individ

ual clocks to (<, 0). However, due to the constraints on clock difference, 

this operation may not preserve the canonicity. An 0 (m2) algorithm [21]
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exists to compute the canonical form from the intermediate matrix.

• The reset (A4, := 0) operation is computed by setting all Mi0 and Moi 

to (<, 0 ) and removing all other bounds on x t.

•  The preset(M, Xi := 0) operation computes the weakest precondition 

of M  with respect to the clock reset. It removes all constraints on clock 

Xi and sets Moi as (< 0). However the result may not in its canonical 

form.

• The zone difference M  — M '  is computed by successively slicing off 

parts of M  that do not lie in M '  [4],

• The disjunction of two clock zone M ,  M '  is not necessarily a DBM. 

That is, the disjunction of two constraints may not be convex.

Parametric Difference Bound Matrices PDBMs extends DBMs with 

linear parameter terms as matrix entries. That is, the entry M i j  is now a 

pair ({< ,< } , £), where £ is a linear term defined over constants and parameter 

variables. Given a parameter valuation u, a PDBM becomes a DBM, whose 

semantics is written as 1MJW. A constrained PDBM is a pair ($ ,M ), where 

$  is a set of constraints over parameter variables, and M  is a PDBM. The se

mantics of a constrained PDBM [($, M ) \  = A constrained PDBM

(4>, M )  is satisfiable if [($, M ) \  is nonempty.

Here are some basic operations over constrained PDBMs [6 6 ].

1 . Adding a guard. In case of DBM, adding a guard g : Xi — Xj ^  d to a 

zone M  is a simple operation, i.e. to determine whether (<, d) < M X] and 

update the bound, written as M  [3 ], and compute the canonical form if so. 

While in the parametric case, adding a guard to a constrained PDBMs 

($, M )  may result in a set of constrained PDBMs.
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Let g : Xi — Xj < t be the adding guard and i /  j .

Define the boolean operation => as over relation symbols < and < as 

what follows. (<=><) =<; (<=><) = < ; (<=><) = < ; (<=>■<) = < . This 

operation is used to check whether the bound imposed by the guard is 

weaker than the corresponding bound in the PDBM.

The resulted set M of constrained PDBMs are computed as follows,

checking between these linear terms.

2 . C anonicalization In the parameter case, the canonical form of a con

strained PDBM can also be computed with Floyd-Warshall algorithm 

symbolically.

BDD-Iike d a ta  s tru c tu re  BDD-like data structures help to improve the 

performance of real-time verification in both space and time complexities with 

intensive data-sharing in the representation of state space [20, 83, 105, 106].

CRD(Clock-Restriction Diagram) [105] is one of most advanced BDD-like 

data structures for the verification of timed automata. CRD can be seen as a 

decision diagram for zone set membership. Each evaluation variable in a CRD 

is of form x, — xr  and the values of such variable are {{<,<} x Z }u{oo}, 

just like the entry for DBM.

By fixing an order of the evaluation variables, a CRD can be constructed 

in a similar way as BDD. In CRDs, a missing evaluation variable, e.g. Xi — Xj, 

is interpreted as Xi — Xj < oo.

if C h  ( U j  =► 0  
{{*,M \g\)} if
{($  U (Uj =$> t), M), ($ U -i(tij => t), M\g\)} otherwise

We took the Omega Library [8 6 ] as decision procedure for inclusion
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(<,oo)

TRUE

Figure 14: Example for CRD with upper bounds

Exam ple 5.5.2 Considering the CRD illustrated in Figure 14, which repre

sents the union of two zones, {0 — x\ < —2, x2 — X\ < —3, Xi — x3 < 5} and 

{0 — x2 < 3, x-i — x3 < 5}.

HRD(Hybrid-Restriction Diagram) [106] is the extension of CRD for the 

parametric analysis of linear hybrid systems. In HRDs, evaluation variables 

are linear terms of the form which together with the outgoing arc

label (r<, c) constitute the linear constraint defined over clock variables and 

parameter variables.

With a canonical form for CRD/HRD and basic set-oriented manipulations 

on CRDs/HRDs, verification can be performed efficiently. As BDD-like data 

structures, the efficiency of CRD/HRD-based fixpoint computation is strongly 

dependent on the ordering of evaluation variables.

61

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



www.manaraa.com

Implementation The algorithm uses a depth-first search technique with 

caching. The proof rules in Figure 9 are used to generate sequents needed to 

be proved next in order for the goal sequent to be true. The cache contains 

sequents that have either been proved or disproved, or are currently assumed 

to be true. When a sequent is generated, the cache is first checked to see if it is 

implied by something in the cache; if this is the case, then no more searching 

is necessary for this sequent. If the sequent is not in the cache, it is added 

into the cache, and rules are then recursively applied to it. The precise details 

of cache management are similar to those for on-the-fly propositional model 

checkers [11, 25], so we omit further discussion here. The pseudo-code for the 

algorithm is presented in Table 1 and continued in Table 2

A sequent is defined as a tuple (split, E, Ihs, rhs, sub, value),where Ihs is a 

zone; split indicates whether splitting constraints are necessary, which are 

stored in a zone set E; rhs is a predicate calculus expression, whose kind may 

be PREDICATE, AND, OR, FORALL, EXISTS, CONSTRAINT, BOOL, ATOMIC, 

sublist, reset according to the definition of predicate calculus; sub is a 

mapping function. The procedure proof takes split, Ihs, rhs, sub as input 

parameters and returns the value of the sequent, where splitting constraints 

are stored as a list of PDBMs in E. The algorithm starts from PROOF (false, 

0,c, X , sub), where c is the zone that represents x  := 0, X  is the interested 

predicate and sub assigns initial value to each control variable.

Sequents are cached to share computations. The value of a cached sequent 

can be looked up by tabled in line (1). Its value my also need to be updated 

due to dependent information later by update-tabled .sequents. Dependent 

relationship between predicate variables can be defined as dependent trees in 

the same way as [40).

Zones operation fl(E i,E 2) takes two zone sets and outputs a zone set E 

guided by p E \ J  Tii A p E  Similarly operation U (Ei,E2)
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Table 1: Pseudo-code for local real-time model-checking algorithm

bool PROOF(bool split, zones &£, zone &lhs, ExprNode &rhs, Subst &sub)
(1) if  tabled(splifc, £ , Ihs, rhs, sub), r e t u r n  theAabledjvalue-,
(2) bool retval ;
(3) SWlTCH(rhs.kind())
(4) CASE PREDICATE:
(5) if  o leaf is determined, r e t u r n  the Aeaf.value-,
(6) get the ExprNode e that defines the predicate variable of rhs;
(7) retval = PROOF (split, £ , Ihs, e, sub);
(8) CASE AND:
(9) retval =  p r o o f  (split, £ i ,  Ihs, rhs.ie/itQ, sub)

A p r o o f  (split, £ 2, Ihs, rhs.righfc(), sub);
(10) if  (split) £  =  £ i n  s 2;
(11) CASE OR:
(12) IF (split) retval = p r o o f  (split, £ i, Ihs, rhs.feft(), sub)

V p r o o f  (split, £ 2, Ihs, rhs.right(), sub);
(13) £  =  £ 1  U £ 2;
(14) ELSE
(15) if  (retval = PROOF(true , £ 1 , Ihs, rhs.ieft(), sub))
(16) generate zones £ 2 =  ( £ 1  fl Ihs);
(17) FOR each 2  6 £ 2
(18) retval = retval A PROOF(/alse , 0, z, rhs.right(), sub);
(19) ELSE retval = PROOF (false , £ , Ihs, rhs.rigbt(), sub);
(20) CASE FORALL:
(21) if  (split) retval = PROOF (split, £ ', suCr(lhs), rhs.expr(), sub)

A forallcond(£,£',lhs);
(22) e l s e  retval = p r o o f  (split, £ , sucT(lhs), rhs.expr(), sub);
(23) CASE EXISTS:
(24) retval = p r o o f  (true , £ ', sucT(lhs), rhs.exprQ, sub)

A existcond(spiit, £, £', Ihs);
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Table 2: Pseudo-code for local real-time model-checking algorithm (cont)

(25) CASE CONSTRAINT:
(26) IF (split)
(27) IF (Ihs < rhs.zone()) ^  =  UNIVERSE; retval = true ;
(28) e ls e  if (Ihs n  rhs.zoneQ = =  0 ) E =  em pty; retval = false ;
(29) ELSE E = (rhs.zone()}; retval = true ;
(30) e ls e  IF (Ihs < rhs.zone()) retval =  true ;
(31) ELSE retval =  false ;
(32) CASE BOOL: retval =  rhs. bool();
(33) CASE ATOMIC: retval =  (sub(rhs.atomic()) = =  rhs.intvaf());
(34) CASE SUBLIST:

retval =  PROOF(spiit, E, Ihs, rhs.expr(), rhs.sub()[sub]);
(35) CASE RESET:
(36) if (split) retval =

PROOF(split, E', reset(lhs, rhs.dodcSet), rhs.exprO, sub);
(37) E =  preset(E ', rhs.clockSet);
(38) else retval =

proof (split, E, reset(lhs,rhs.c/ockSet), rhs.expr(), sub);

(39) update_tabled_sequents(sp/it, E, Ihs, rhs, sub, r e tv a l);
(40) return retval ;
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defines a zone set £  by p e  V £  iff p G V Si V p € \ /  S 2; complement of 

a zone set p 6 V ^  iff P t  V We sometime abuse these notations by 

providing a zone instead of a zone set as an input. Zone operation < , 22)

iff p  6  Z\ —> p  6  *2 •

We use function forallcond(£, S', Ihs) to determine the weakest £  given 

by the condition sucT(lhs D £) =  sucT(lhs) D S'; To do this, we can first test 

whether suc,-(lhs) fl S ' has a ray to positive infinity and then define S in the 

way as 2  € S iff 2  € S'A(zfllhs) /  0; While existcond(spfit, S, S ', Ihs) defines 

S =  pre(S') when split is true. If split is false, it returns false when there is 

any p 6 Ihs and p £ \J pre(S'))

Operation reset(^, clockSet) computes the strongest post-condition with 

respect to the reset clocks; while p re se t(2 , clockSet) gives the weakest pre

condition.

All other operations over the class ExprN ode, like left(), right(), exprQ, 

sub(), atomicQ, intvalQ, boolQ, zoneQ, clockSet, works in a straight way. 

In fine (34), sub()[sub] is the updating operation over mapping functions. 

universe represents the universe constraint, empty the empty constraint.

To identify leaves, a stack is useful to cache sequents whose rhs is predi

cate. Note that leaves can be identified even with unknown splittings.

5.6 E xperim ental R esu lts for R eal-T im e

To assess the performance of the non-parametric algorithm, we ran CWB- 

RT on several examples taken from the literature and compared the results 

with those from the most recent available versions of Kronos [109] (2.5i.2), 

UPPAAL [19] (3.4.7, with both breadth-first (-b) and depth-first (-d) search 

options) and RED [105] (5.3, with both forward and backward analysis). The
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experimental platform used was an Intel Pentium IV 2.8GHz with 2GB mem

ory running Linux. The systems are listed below, together with properties 

(a) that should hold of correct implementations and properties (b) containing 

a bug that should not hold of correct implementations. The “formula bugs” 

include both logical errors and errors that could result from typographical 

mistakes (i.e. typing “2” rather than “1” by accident).

1. Fischer’s timed Mutual Exclusion (MUX) [4, 105]. There are n processes 

trying to access a critical section. Initially each process is idle, but at any 

time it may begin executing the protocol provided the value of a global 

variable p is 0. It then delays for up to Ag seconds before assigning 

its identifier to p. It may enter the critical section within Ac seconds 

provided p still equal to its identifier. It reinitializes p to 0 upon leaving 

the critical section. When A B > A c  two processes may enter the critical 

section at the same time. The constants we use are A B = 10, Ac =  19. 

We verify that (a), at any time, no more than one process is in its critical 

section, (b). at most four processes could be in their waiting states at 

the same time.

2. FDDI token-ring mutual exclusion protocol [47, 105]. A network is con

sisted of n identical stations and a ring, where the stations can com

municate by synchronous messages with high priority and asynchronous 

messages with low priority. For each station, two clocks are used. The 

biggest timing constant used is 50 * n + 20, where n is the number of 

stations. We want to verify that (a), at any moment, at most one station 

is holding the token, (b). station i is in its asynchronous mode at time 

20 * i of the network clock.

3. Scheduling problem of real-time operating system (PATHOS) [15, 105]. 

Each process runs with a distinct priority in a period equal to the number
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of processes. Scheduling policy must follow priority among processes. 

The property verified is that (a), no deadlines will be missed, (b). no 

new deadlines (2 units ahead of time) will be missed.

4. Safeness of a leader-election algorithm (LEADER) [105]. Each process 

has a unique identifier greater than 0 and a control variable p which 

records its parent and is initialized to 0. A process with p =  0 may 

broadcast its request to be adopted by a parent. Another process with 

p =  0 may respond. Then the process with smaller identifier will become 

the parent of the other one. The biggest timing constant used is 2. We 

check that (a) .at any time there is at least one process who is a child 

to no other processes, (b).at any time there is at least three processes, 

each of which is a child to no other processes.

5. Bounded liveness of a leader-election algorithm (LBOUND) [105]. We 

verify that (a), after 2 \log2m\ time units, where m  is the number of 

processes, the algorithm will terminate, (b). after 3 time units, the 

algorithm will terminate.

6. CSMA/CD benchmark [105, 109]. We check that (a), at any moment, 

at most one process is in the transmission mode for no less than 52 time 

units, (b). a third process could retry to send while two are already in 

the transmission status.

One of the motivations for on-the-fly model checking is that bugs can be 

caught much more quickly than with global approaches since computation can 

be short-circuited when errors are found. We tested this hypothesis in two 

ways. First, for each buggy formula (b) and correct system specification, we 

collected comparative performance data in Table 3 for the model checkers in 

question. These figures indicate that CWB-RT performs much better than the 

other tools in this case.
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Table 3: Non-parametric real-time performance data when correct systems fail buggy (b) properties.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU 
time in seconds, “O/M” means “out-of-memory”.

Example
CWB-RT

non-parametric
Kronos

2.5i.2
UPPAAL 
3.4.7 (-b)

UPPAAL 
3.4.7 (-d)

RED 5.3 
(forward)

RED 5.3 
(backward)

MUX-20-b 7.83s O/M O/M 24.55s O/M O/M
MUX-40-b 372.81s O/M O/M 1139.57s O/M O/M
MUX-50-b 2653.00s O/M O/M O/M O/M O/M
FDDI-30-b 0.20s O/M O/M O/M 22.85s 15.96s
FDDI-40-b 0.58s O/M O/M O/M 92.92s 78.57s
FDDI-60-b 2.76s O/M O/M O/M 1788.43s 1053.06s
PATHOS-7-b 10.58s O/M O/M O/M O/M 3582.55s
PATHOS-8-b 48.32s O/M O/M O/M O/M O/M
PATHOS-9-b 212.66s O/M O/M O/M O/M O/M
LEADER-10-b 0.00s O/M O/M O/M 21.32s 264.46s
LEADER-20-b 0.03s O/M O/M O/M O/M O/M
LEADER-120-b 26.50s O/M O/M O/M O/M O/M
LBOUND-lO-b 0.01s O/M O/M O/M O/M O/M
LBOUND-40-b 1.92s O/M O/M O/M O/M O/M
LBOUND-120-b 284.42s O/M O/M O/M O/M O/M
CSMA/CD-20-b 0.02s O/M 6.11s 0.12s O/M O/M
CSMA/CD-40-b 0.15s O/M O/M 2.41s O/M O/M
CSMA/CD-100-b 3.81s O/M O/M 232.32s O/M O/M
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Table 4: Non-parametric real-time performance data for buggy system specifications and correct (a) properties. 
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU 
time in seconds, “O/M” means “out-of-memory”.

Example
CWB-RT

non-parametric
Kronos

2.5i.2
UPPAAL 
3.4.7 (-b)

UPPAAL 
3.4.7 (-d)

RED 5.3 
(forward)

RED 5.3 
(backward)

MUX-14-e 1.32s O/M O/M O/M O/M O/M
MUX-16-e 13.00s O/M O/M O/M O/M O/M
MUX-18-e 257.02s O/M O/M O/M O/M O/M
FDDI-30-e 0.24s O/M 1.81s 2.54s 67.09s 14.15s
FDDI-40-e 0.70s O/M 6.09s 9.39s 351.09s 39.37s
FDDI-60-e 3.16s O/M 44.43s 63.26s 7066.18s 308.60s
PATHOS-5-e 0.51s O/M 1.02s 109.56s 215.04s 24.33s
PATHOS-6-e 19.71s O/M 354.40s O/M O/M 250.64s
PATHOS-7-e 2283.13s O/M O/M O/M O/M O/M
LEADER-60-e 0.02s O/M 21.18s 21.04s O/M O/M
LEADER-70-e 0.03s O/M O/M O/M O/M O/M
LEADER-150-e 0.26s O/M O/M O/M O/M O/M
LBOUND-lO-e 0.00s O/M O/M 62.33s O/M O/M
LBOUND-20-e 0.02s O/M O/M O/M O/M O/M
LBOUND-120-e 1.16s O/M O/M O/M O/M O/M
CSMA/CD-10-e 65.19s O/M O/M O/M 2057.94s 2389.87s
CSMA/CD-ll-e 200.50s O/M O/M O/M O/M O/M
CSMA/CD-12-e 670.95s O/M O/M O/M O/M O/M



www.manaraa.com

Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Table 5: Non-parametric real-time performance data for correct systems and (a) properties.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU 
time in seconds, “O/M ” means “out-of-memory” .

Example
CWB-RT

non-parametric
Kronos

2.5i.2
UPPAAL 
3.4.7 (-b)

UPPAAL 
3.4.7 (-d)

RED 5.3 
(forward)

RED 5.3 
(backward)

MUX-5-a 0.23s 0.48s 0.77s 4.12s 4.67s 1.36s
MUX-6-a 4.03s O/M 68.87s 927.79s 66.89s 3.92s
MUX-7-a 115.53s O/M O/M O/M 778.48s 10.32s
FDDI-20-a 0.21s O/M O/M O/M 2.02s 2.25s
FDDI-40-a 2.29s O/M O/M O/M 16.91s 24.39s
FDDI-60-a 11.03s O/M O/M O/M 60.07s 85.99s
PATHOS-4-a 4.19s O/M 0.21s 0.14s 10.15s 6.07s
PATHOS-5-a 2824.96s O/M 2.14s 55.27s 353.98s 360.06s
PATHOS-6-a O/M O/M O/M O/M 12053.26s 31190.21s
LEADER-6-a 0.24s O/M 1.32s 1.53s 0.43s 1.28s
LEADER-7-a 12.74s O/M 136.29s 142.02s 1.18s 3.73s
LEADER-8-a 1888.35s O/M O/M O/M 2.97s 9.80s
LBOUND-6-a 0.35s O/M 2.53s 1.64s 67.70s 33.17s
LBOUND-7-a 15.22s O/M 145.86s 153.59s 453.58s 193.68s
LBOUND-8-a 2431.69s O/M O/M O/M 2933.81s 892.97s
CSMA/CD-6-a 3.89s 0.32s 2.55s 5.15s 709.12s 0.52s
CSMA/CD-7-a 56.62s O/M 218.81s 182.49s 12109.23s 1.26s
CSMA/CD-8-a 1584.76s O/M O/M O/M O/M 3.15s
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We then studied situations in which correct formulas were used but buggy 

system specifications given. The data we obtained is given in Table 4, where 

the error for MUX originates in a misassignment to the global lock with the 

difference between the number of processes and the process identifier; the 

destination of the transition from the asynchronous state is misset to itself 

for the first station in FDDI; the error in PATHOS involves an omitted clock 

reset, which would be a typical programming error one might observe; and the 

error in CSMA/CD is caused by missing a collision signal, thus it leads to an 

incomplete system specification; the error in LBOUND is caused by setting 

the parent to NULL in the requester-responder pair, and to the identifier 

complemented by the number of processes in LEADER.

Again, the figures show that CWB-RT significantly outperforms the other 

tools on these case studies. We conjecture that CWB-RT’s superior perfor

mance in this and the preceding case is due to the combined forward /  back

ward analysis of our algorithm. The logical infrastructure of our algorithm is 

useful to detect errors quickly while most of other tools are devoted to compute 

a fixpoint before it could find an error.

An often-mentioned criticism of on-the-fly model checking is that when 

system specifications and formulas are both correct, these algorithms perform 

very poorly. To test the validity of this statement, we ran CWB-RT on all (a) 

properties for correct versions of the case studies. The performance figures in 

Table 5 are for the correct versions of the case studies against (a) properties. 

Specifically, it can be seen that CWB-RT generally outperforms Kronos and 

is often better, though sometimes worse, than UPPAAL3.4.7. RED5.3 gen

erally outperforms CWB-RT on these examples, although it should be noted 

that while Kronos [109] was implemented with DBMs, as CWB-RT is, UP

PAAL [19] use CDDs and RED5.3 CRDs [105]. We conjecture that CWB-RT 

would see considerable performance improvement if we used CDDs /  CRDs
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in place of DBMs. Also, CWB-RT’s competitiveness does suggest that our 

proof-search strategy, which combines forward (proof search) and backward 

(sequent caching) analysis, offers performance improvements over the “pure 

forward” or “pure backward” strategies favored by these tools.

5.7 E xperim ental R esults for Param etric  

R eal-T im e

To assess the performance of the parametric CWB-RT, we ran it on several 

examples taken from the literature and compared the results with those from 

the most recent available versions of TReX-1.4 [13], HyTech-1.04f [63] and 

RED5.3 [106] with both forward and backward analysis. (All these tools solve 

the constraint-synthesis version of the problem: they compute the most gen

eral constraints on parameters that guarantee the property in question will 

hold. It is easy to use these results to solve the universal problem, however.) 

The tool TReX [13] can deal with non-linear parameter constraints. It was 

implemented with PDBMs and also supports the Omega Library as an exter

nal decision procedure. Both HyTech [63] and RED [106] are tools for linear 

hybrid automata, which are more general than parametric timed automata. 

While HyTech-1.04f was implemented with polyhedra as its data structures, 

RED5.3 was released with HRDs (Hybrid-Restriction Diagrams), a BDD-like 

data structure, which is more compact and efficient than PDBMs and poly

hedra, see [106] for the experimental results. Due to the absence of publicly 

available implementations, other constraint-synthesis tools that are capable 

of parametric analysis, namely LPMC [97] and the extension of UPPAAL for 

linear parametric model checking [6 6 ], are not considered here; see [44] for the 

performance reports.

The experimental platform used was an Intel Pentium IV 2.8GHz with
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2GB memory running Linux. The systems are listed below together with 

different constraints over parameters. Note that for any parameter valuation 

that satisfies condition (a), the model-checking problem is unsuccessful, while 

successful under condition (b); condition (c) is the mixed case, i.e. some 

parameter valuations make the problem successful, others unsuccessful.

1. Fischer’s timed Mutual Exclusion (MUX) [4, 106]. We verify that at 

any time, no more than one process is in its critical section, when (a). 

Ab > =  Ac ; (b). A b < Ac ; (c). A s  > 0 , Ac > 0 .

2. Nuclear reactor controller (REACTOR) [6 , 106]. The goal of the system 

is to maintain the reactor temperature between a minimal threshold L 

and a maximal threshold U by inserting control rods. A rod must stay 

outside for at least T time units after it is removed. We verify that 

whenever the temperature reaches U, one of the rods can be put in, with 

condition (a). T  > =  16 + (m — 1) * 21; (b). T  < 16 + (m — 1) * 21; (c). 

T  > =  (m — 1) * 21, where m is the number of rods in the system.

3. Generic Railroad Crossing (GRC). We use the real-time version of the 

protocol adapted from [106]. A system operates a gate at a railroad 

crossing. The railroad crossing /  lies in a region of interest R. A set of 

trains travel through R  on multiple tracks in both directions. A constant 

parameter 6 is used to determine the controller actions. The safety 

property is to ensure the system will not enter an unsafe state where a 

train is in the crossing but the crossing gate is not down. We check with

(a). 6 > 2 0 ; (b). 6 <= 2 0 ; (c). 6 > 1 0 .

4. CSMA/CD benchmark [106, 109]. This is the ethemet bus arbitration 

protocol with the idea of collision-and-retry. A typical worst case round 

trip propagation is 6 time units, and it need a time units to detect a 

collision. One safety property requires that at any moment, at most one
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process is in the transmission mode for no less than time units. We 

check (a). S <= cr; (b). 5 > 52, a < =  26; (c) 6 > 52, a > 0.

We tested the fast error-detection capability of the parametric CWB-RT 

with buggy condition (a) and (c) over parameters, we collected comparative 

performance data for the model checkers in question. These figures in Table 6  

and Table 7 indicate that CWB-RT significantly outperforms the other tools 

in this case. Again, we conjecture that CWB-RT’s superior performance in 

this case is due to the combined forward /  backward analysis of our algorithm. 

The logical infrastructure of our algorithm is useful to detect errors quickly 

while most of other tools are devoted to compute a fixpoint before it could 

find an error.

The performance figures collected in Table 8  are from all (b) properties of 

these case studies. Specifically, it can be seen that CWB-RT generally outper

forms TReX-1.4 and HyTech- 1.04f. RED-5.3 generally outperforms CWB-RT 

on these examples, although it should be noted that while TReX [109] was 

implemented with PDBMs, as CWB-RT is, HyTech [19] use polyhedra and 

RED5.3 HRDs [106]. Since data structures have been one of the key challenges 

for efficient real-time model checking [105, 106], we conjecture that CWB-RT 

would see considerable performance improvement if we used a BDD-like data 

structure in place of PDBMs (our prototype uses PDBMs because of the ease 

of the implementation). Also, CWB-RT’s competitiveness does suggest that 

our proof-search strategy, which combines forward (proof search) and back

ward (sequent caching) analysis, offers performance improvements over the 

“pure forward” or “pure backward” strategies favored by these tools.
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Table 6 : Parametric real-time performance data with (a) conditions.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU 
time in seconds, “O/M” means “out-of-memory”, or “does not finish in two hours” . “N/A” means “not available” 
(especially for TReX-1.4, a segmentation fault occurs).

CWB-RT
parametric

TReX1.4 HyTech 1.04f RED5.3
fw bw fw bw fw bw

GRC-5-a 0.04s O/M O/M O/M O/M 334.26s O/M
GRC-6 -a 0.07s O/M O/M O/M O/M 5403.17s O/M
GRC-10-a 0.34s O/M O/M O/M O/M O/M O/M
GRC-40-a 125.44s O/M O/M O/M O/M O/M O/M
MUX-4-a 0.06s O/M N/A O/M 56.09s 2.90s 3.22s
MUX-7-a 0.13s O/M N/A O/M O/M 363.76s 1190.26s
MUX-10-a 0 .2 0 s O/M N/A O/M O/M O/M O/M
MUX-70-a 6.69s O/M N/A O/M O/M O/M O/M
CSMACD-6 -a 0 .0 1 s O/M O/M 1354.50s O/M 4.42s 48.68s
CSMACD-7-a 0 .0 1 s O/M O/M O/M O/M 33.35s O/M
CSMACD-10-a 0.03s O/M O/M O/M O/M O/M O/M
CSMACD-70-a 4.26s O/M O/M O/M O/M O/M O/M
REACTOR-5-a 0.07s O/M O/M 1.83s 3.14s 92.05s 15.07s
REACTOR-6 -a 0 .1 1 s O/M O/M 16.79s 49.47s O/M 412.45s
REACTOR-7-a 0.19s O/M O/M O/M O/M O/M O/M
REACTOR-40-a 145.95s O/M O/M O/M O/M O/M O/M
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Table 7: Parametric real-time performance data with (c) conditions.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU 
time in seconds, “O/M ” means “out-of-memory”, or “does not finish in two hours” . “N/A” means “not available” 
(especially for TReX-1.4, a segmentation fault occurs).

CWB-RT
parametric

TReX1.4 HyTech 1.04 f RED5.3
fw bw fw bw fw bw

GRC-5-c 0.05s O/M O/M O/M O/M 338.45s O/M
GRC-6 -c 0.07s O/M O/M O/M O/M 5598.72s O/M
GRC-10-c 0.34s O/M O/M O/M O/M O/M O/M
GRC-40-c 124.51s O/M O/M O/M O/M O/M O/M
MUX-4-c 0.08s O/M N/A O/M 56.78s 23.61s 3.36s
MUX-5-c 0.13s O/M N/A O/M O/M 818.26s 29.22s
MUX-10-c 0.26s O/M N/A O/M O/M O/M O/M
MUX-70-c 12.26s O/M N/A O/M O/M O/M O/M
CSMACD-4-c 0 .0 1 s O/M O/M 4.17s O/M 24.07s 2.05s
CSMACD-6 -c 0 .0 1 s O/M O/M 775.62s O/M 3206.95s 36.88s
CSMACD-10-c 0 .0 1 s O/M O/M O/M O/M O/M O/M
CSMACD-70-c 2 .2 0 s O/M O/M O/M O/M O/M O/M
REACTOR-5-c 0.09s O/M O/M 4.32s 3.68s 207.31s 18.68s
REACTOR-6 -c 0.14s O/M O/M 68.92s 41.04s O/M 389.22s
REACTOR-7-c 0.19s O/M O/M O/M O/M O/M O/M
REACTOR-40-c 144.91s O/M O/M O/M O/M O/M O/M
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Table 8 : Parametric real-time performance data with (b) conditions.
The numbers in the names of the systems refer to the numbers of processes in the models. Times represent CPU 
time in seconds, “O/M ” means “out-of-memory” , or “does not finish in two hours” . “N/A” means “not available” 
(especially for TReX-1.4, a segmentation fault occurs).

CWB-RT
parametric

TReX1.4 HyTech 1.04f RED5.3
fw bw fw bw fw bw

GRC-2-b 2.24s 0.85s 0.50s 0.58s 1.35s 1.05s 0.31s
GRC-3-b 27.25s O/M O/M 22.75s 301.71s 2.75s 2.96s
GRC-4-b 271.52s O/M O/M O/M O/M 28.56s 5.47s
GRC-5-b 2263.06s O/M O/M O/M O/M 260.12s 54.66s
MUX-2-b 0 .1 0 s 0.08s N/A 0 .1 0 s 0.09s 0 .1 0 s 0.07s
MUX-3-b 2.72s 4.40s N/A 2.80s 2 .8 6 s 1 .0 2 s 0.45s
MUX-4-b 66.79s 648.32s N/A 217.85s 56.20s 23.79s 3.12s
MUX-5-b 2546.32s O/M N/A O/M O/M 865.44s 9.82s
CSMACD-2-b 0.59s O/M O/M 0.07s O/M 0.18s 0.18s
CSMACD-3-b 15.94s O/M O/M 0.39s O/M 1.76s 1.76s
CSMACD-4-b 310.70s O/M O/M 4.02s O/M 17.77s 2.07s
CSMACD-5-b 4019.83s O/M O/M 37.35s O/M 212.25s 8.75s
REACTOR-6 -b 1.45s O/M O/M O/M 41.97s O/M 331.70s
REACTOR-lO-b 6.63s O/M O/M O/M O/M O/M O/M
REACTOR-20-b 53.82s O/M O/M O/M O/M O/M O/M
REACTOR-30-b 186.99s O/M O/M O/M O/M O/M O/M
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Chapter 6

Model Checking Presburger 

Systems with PESs

This section introduces a proof-based symbolic model-checking technique for 

Presburger systems. This technique will also serve as the basis of our query- 

checking approach.

6.1 Presburger System s

We begin by introducing some terminology and notation. Throughout let 

(x> y , . . .  e)X be a set of data variables, (a, b,. . .  e )Z  be the set of integers, 

and (t e)II be the set of linear terms of form of Also fix a set of

(uninterpreted) actions (a, /? ,... €)^lct.

Presburger systems may be thought of as state machines that, in the course 

of their execution, may modify integer-valued data variables. The tests and 

modifications to these variables that these state machines may engage in must 

take the form of so-called Presburger formulas, which represent a restricted 

subset of logical formulas over integer arithmetic. In this section, we review the 

definition of Presburger formulas and introduce Presburger systems formally.
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P resb u rg er form ulas Presburger formulas are generated by the following 

BNF grammar, where x 6  X and t \ , t 2 €  n.

<t> '■'■= <  t2 I <p A <P I ->(/) I 3X.(f)

We use $  to represent the set of Presburger formulas in what follows.

Semantically, Presburger formulas are interpreted with respect to data 

states p € Zx mapping data variables to integers. We write p |= 4> when 

p makes <f> true; the definition is standard and is omitted. Formula 0 is called 

satisfiable if there exists p such that p \= 4>.

The satisfiability of Presburger formulas is decidable, although the worst- 

case time bound is double-exponential in the length of the formula. Efficient 

procedures [71, 8 6 ] do exist to solve the satisfiability problems that arise most 

often in practice, which typically posses a small number of constraints and do 

not contain multiple levels of alternating quantifiers [32],

Finally, a Presburger formula (j> defines a set |0] of data states in the 

obvious manner: [<t>\ = {p \ p \= <t>}■

P resb u rg er system s Presburger systems may be seen as symbolic state 

machines, with a finite sets of control locations and Presburger formulas and 

state transformations used to show how the data variables are modified as 

control locations are updated.

D efinition 6.1.1 A Presburger system (PS) is a tuple {S, R, Si, InitfZ), 

where S  is a finite set of control locations; R C S x Q x A x  A ct x S  is 

a finite set of transitions; Si C S  are the initial locations; and ImtC e  3* is 

the initial condition.

Intuitively, Si contains the possible starting locations and InitC the initial 

conditions on data variables. Based on the current control location and state 

of the data variables, transitions whose $ G $  components are true may fire,
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with data variables being updated in a manner consistent with the transition’s 

state-transformation formulas. These notions are made precise by interpreting 

PSs semantically using concrete transition systems.

Given a PS G =  (S, R, Sj, InitC), CTS Cg =  (£, V, —>C! £ /) is given as 
follows.

1. E C S x Z 1

2. V((s,p)) = p

3. (s, p) (s', pf), iff there is (s , <f>, A, a, s') e  R, with p |= <f> and (p, p') \= A

4. £ / =  {(si,p) | Si e  5 /,p  \= Inite}

As an example, we define the PS G = (S, R, 5/, InitC) for the system in 

Figure 1 as follows, where r  is a special internal action.

-  S  =  {s0 ,si}

{s0, x < 5; x' =  x  + 1; r; So}

{ s 0, y <  8;t/ =  j /+  1;t;s0}

_  R  =  y  { s o , y <  5;;r;s i}
{si, x > 2 ; x' =  x — 1 ; r; s i}

{su y > 3\y' = y — l ;r ;s i}

{«i,x > 2 ; ; r ; s 0}

-  5 / =  {s0}

-  InitC =  (x =  2 A y ~  3)

6.2 T he Presburger M odal M u-C alculus

Temporal-logic query checking requires a “base logic” in which to write system 

requirements. In query-checking work, variants of the temporal logic CTL [36]
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are typically used for this purpose. In this work, we consider a different, lower- 

level, but more expressive logic that allows the definition of recursive formulas. 

We call this logic the Presburger Modal Mu-Calculus.

Our formulas are defined using MESs, which consist of blocks of equations 

of the form X  =  ip, where X  e  X is a formula variable and ip is a formula 

defined by the following grammar.

ip (ps | i ’ V ip | ip A ip | {a)ip \ \a\ip \ X

In the above, <ps is a Presburger formula, and a  is an action. Operators (a) 

and [a] are called modal operators; these, together with V and A, are standard 

from the prepositional modal mu-calculus [72],

The semantics of the Presburger modal formulas is given with respect to 

a CTS C  =  (E, V, —>c, E/), and takes the form of a relation a \=c,e ip, which, 

given an environment 9 : X 2E mapping formula variables to sets of states, 

determines whether or not CTS state a satisfies ip. This relation may be given 

as follows (obvious cases omitted).

<y t=c,e <P> iff V(cr) |= <p,
a |=c,e X  iff a € 9(X)

a 1=c,g (ot)ip iff there is o' s.t. a A c a' and a' (=c,e V’

& |= c ,e  [<*)ip iff for all o7 s.t. a A c a ', a' (=c,e ip

We define \ ip \c ,e  =  {<* \ o  \= c ,9 V'}- We may now apply the general fixpoint 
theory, to define the semantics of MESs.

As a modal mu-calculus, the Presburger MESs are expressive enough to 

encode many temporal logics, including CTL. We sometimes use these CTL 

operators as shorthands to specify query formulas whenever convenient. For 

example, the invariant property AG<p can be defined as A =  <p A [t \X , the 

reachability formula EF<p : X  =  4> V (t )X , where r  is a special action that can
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label any transition (because there is no action label in CTL); the bounded 

liveness property A<p\Nip : X  = <p V (<p A (r]X); and EX</> : (t )4> etc.

6.3 From Presburger M odel Checking to  

P E Ss

The Presburger system model-checking problem asks: given PS G, formula- 

closed MES M  and X  e  Ihs(M), does G \=m X ? This section shows how to 

translate this question into an equivalent one involving PESs.

The translation from an PS G and an MES M  to a PES is achieved 

by constructing a PES equation for each control location in G and equa

tion in M. Formally, we define a function F  that, given an PS G and 

formula-closed mu-calculus equation system M, yields a predicate-closed PES 

F(G, M ). F  is applied on a block-by-block basis; that is, F(G , {B \,. . . ,  Bn)) =  

(F(G , B {),. . . ,  F(G, Bn)). And F(G, B) =  F(G, (p, E )) in turn yields a pred

icate equation block of form (p, E') , where for each equation X  = ip in E  and

control location s in G, there is an equation of form Ys x =  F(s, t/>) in E'. 

F(s, ip) is defined as follows.

F(s, (p3) = <ps

F(s,il>iVifa) = F(s,4’i) V F{s,ip2)

F(s,ipi A ^ 2) =  F(s,4>i) A F(s,ip2)
F(s, X ) = Ys<x

F{s,(a)ip) =  \/{<p A(F(s',V>)[A]) | (s,0, A, a, s') e  R}

F(s, [a\ip) = f\{(p -» (F(«,,V»)[i4]) | <s, 0, A, a , s') e R}

T heorem  6.3.1 Let G = (S, R ,S i, InitS) be an PS, and let M  be a closed 

modal equation system. Then for any s € S  and any X  € lhs(M), we have 

that [X|G,Af(s) =  [F*,x]f(g,m)-
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Proof: Proof follows Theory 4.4.3 as a specialization.

6.4 Local M odel Checking

We now customize the “goal-directed” proof system to the Presburger systems 

in Figure 15. The proof system establishes when a set of predicate-closed 

formulas $  =  {<p\ , . . . ,  (pn} implies a formula ip potentially containing predicate 

variables from a PES P. The proof rules operates on sequents of the form: 

$  I- P ip, which we shall interpret as the formula / \ 4 > —> ip. The rules follow 

the following syntactic conventions: <p,(pi,(p are predicate closed, while ip,ipi 

need not be; and $ ,0  is short-hand for 4> U {</>}. Conclusions axe also written 

above subgoals, which are separated by a .

Vi $  hp V’l V 1p2
$  Pp ip i V2

$  hp Ipl V 1p2
$ 1p2

V3
$  h p  <p V 

$, not(0) l-p V'
V4

$  h p  ip V <p 

$,not(<£) Pp 4>

A
$  h p  ipi A ip2

$  \~P ip 1 ; 4> hp ip2
V

$  i"p i>\ v ip2
<p h p  ipi ; 4>, -«p h p  ip2

4> hp ip[A\ 
p O S t($ , A) h p  ip

<f> h p  X
c  (x  = ^  6 p ) $  h p  ip

Figure 15: A local approach for Presburger systems.
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Rules Vi — A are familiar from the standard predicate calculus; not function 

“drives” negations inside; Intuitively, rule V is used for splitting conditions, 

The remaining rules are for the substitution operator and predicate variables. 

post(4>, A) = { p / \ p \ = $  and (p, pf) E A } defines the strongest postcondition 

of Presburger formulas $  wrt. the state transformation A. These postcondi

tions may also be represented as Presburger formulas.

The rules also share the implicit side condition: they may only be applied 

to non-leaf sequents. These are defined in the samw way as Definition 3.5.1.

A proof built using these rules is valid if and only if it is finite, every path 

ends in a leaf, and every leaf is successful. The following is true.

T heorem  6.4.1 The proof rules in Figure 15 are sound: i f$  hp ip has a valid 

proof then [3> hp ip\P =  where P is the PES containing the definitions of 

the predicate variables.

Proof: Proof follows Theory 3.5.2. ■

In general, the proof rules will not be complete, although Presburger arith

metic is decidable. This is because proofs of certain sequents may require 

infinite-depth trees (i.e. fixpoint computation does not converge in finite 

time [45]). To overcome this, conservative approximation techniques and ac

celeration heuristics (e.g. [32]) may be needed to achieve convergence of an 

approximate fixpoint computation. On the other hand, if all the data vari

ables are bounded (i.e. take values from a range), then the proof system is 

complete. In this case, the set of Presburger formulas are finite. The argument 

of the completeness is similar to the propositional model checking [39].
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6.5 Im plem entation  and Perform ance Evalua

tion

Since the above-mentioned local model-checking technique also serves as the 

basis for our query checking in Chapter 7, we leave our description of the im

plementation and experimental results to Section 7.4, where model checking is 

considered as query checking without any placeholder. Typically, Table 10 and 

Table 11 shows that our model checker runs faster than the Action Language 

Verifier [17], the state-of-the-art model checker for Presburger systems.
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Chapter 7

Temporal-Logic Query Checking 

for Presburger Systems

In this chapter, we describe our query checking approach for the Presburger 

modal mu-calculus. Queries in our setting will consist of formulas in the mu- 

calculus augmented with placeholders of form ?x , where X  is a formula variable 

used only for identification purposes. Placeholders may also have negation 

applied to them in queries: so ->?x  may also appear within a query. A query 

may also have multiple placeholders ?x,?y,  etc., distinguished by the formula 

variables labeling the placeholders. For technical convenience, throughout of 

the paper we assume that placeholders are different from formula variables, 

and thus that queries are “formula closed”. We call an occurrence of the 

placeholder l x  is positive in a query V’ if it appears under no negation in the 

query ip , and negative if it appears negated. A placeholder ?x  is pure in a 

query ip if all of its occurrences have the same polarity (positive or negative), 

and mixed otherwise.

A query problem consists of a query formula ip and a PS G; a solution to 

such a problem is an assignment of formulas to placeholders in tp such that G 

satisfies the resulting mu-calculus ip ' obtained by replacing the placeholders in
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V’ by their formulas. In general, a query problem can have many solutions; we 

are particularly interested in strongest /  weakest solutions, when they exist.

Sometimes we axe interested in a subset of data variables in a solution 

to a placeholder. This is done with a projection operator {}” after the 

placeholder. For example, suppose X =  {x,y,  z},  we only care about variable 

x  and y, then ?x : {1 , 2/} projects the solution from Z t o  Z^x'yK

7.1 A  Sim ple Exam ple

We use a simple example to show how our query checking works.

V

7 = 0

Figure 16: A simple transition graph

Considering the query formula AG?*, that is Y  =  (?x A [r]F), against the 

transition system in Figure 16, computing the “solution” for ?x amounts to 

answering the question “W hat’s the strongest invariant in the system?” . Note 

that data variables p and q are unbounded. We show that this problem can 

be solved with our Gentzen-like proof system. Taking the placeholder ?x as 

a Presburger formula, we translate the query formula and the system model 

into the following PES.

> j =  A Y2\p' =  0 A cf =  1]

F2 = ?x AFi[p' =  1 Ag' =  0]1.

Then the query checking problem is reduced to finding the strongest for

mula that can replace ?x such that 3> —> Y\ is a tautology, where $  =  (p =  

1 A q =  0) is the initial condition of the transition system, and Y\ is generated
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from the initial control location si and the formula variable Y .  Applying the 

proof rules, we get the following tableau.

$  h Yl

$  b?x A YJ^p' =  0 A (f =  1]

$  h Y2\p' =

f-HII<o

$ b ? x [p '=  0A q '=  1] A Y ^  = 1 A ^  =  Oj

$  b?x[p/ =  0 A q' = 1] $> h T ib ' =  1 A q1 = 0]

p  = 0 A q =  1 h?x A i/-leaf is reached

For this tableau (proof structure) to be successful, all its leaves must be suc

cessful. Now:

•  The v-leaf $  I- V'i[p' =  1 A <f =  0] is successful.

•  For sequent $  b?x to be a successful leaf, we need p =  1 A q 

to be a tautology. The strongest formula to replace ?x such 

sequent is valid would be $  itself, that is (p =  1 A q =  0).

•  Similarly, for leaf p =  0 A q =  1 F?x to be successful, the 

formula is (p = 0 A q =  1).

Therefore, to make the proof successful, we have the strongest 

?x =  ( p = l A g  =  0)V(p =  0A<7=l)

7.2 E xisten tia l Query Checking

The above example suggests an efficient symbolic approach for solving query 

problems: determine the solutions to placeholders at the leaves of a poten

tially successful tableau (PST) that arise when applying our model-checking 

procedure to a query. By PST, we mean a tableau whose leaves may contain
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occurrences of placeholders and which could be identified as successful by ap

propriate assignments to these placeholders. For queries, it may be shown that 

leaves containing placeholders in a PST may have one of two forms: <f> P?x 

or ^ I— i?x, where 4> is predicate closed and placeholder closed, (i.e. without 

any occurrence of any placeholder). We call such leaf sequents potentially suc

cessful leaves. Note that the occurrence of ?* in <f> h?* is positive, and the 

occurrence of ?* in <fi I— '?* is negative.

Let G be a PS and V’ a query formula with (possibly multiple) 

placeholders?*( , . . . ,  ?y). To solve against G, i.e. give a solution to all the 

placeholders we compute the PEIS (augmented with queries) from the model- 

checking problem for G and ip, treating placeholders like Presburger formula 

in the translation; we call the resulting extended PES a query predicate, since 

it contains placeholders. We then search for a potentially successful tableau 

T  by applying proof rules to the query predicate.

Existential query checking provides solutions to placeholders according to 

a single (potentially) successful tableau. Once we have identified a potentially 

successful tableau T, we compute solutions for the placeholders as follows.

1. The solution to the positive occurrences of placeholder ?* with respect 

to T, written as [? * |t , is given by

[?*1t = ^ I $ *s a seQuent T}

2. The solution to the negative occurrences of placeholder ?* with respect 

to T, written as I?*It, is given by

| ? * ] | t  =  / \ {  not(<£) | (f) I— i?x is a sequent in T}

We now have the following.

Theorem 7.2.1 Let T  be a potentially successful tableau for a PES con

structed from query formula tp and PS G, and let ?* be a placeholder. Then
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replacing all occurrences o f l x In T  by any formula <p such that [?^ |T implies 

(p and 4> implies | ? * ] | t  results in a tableau that can be extended into a successful 
tableau.

Proof: The theorem holds apparently. ■

In other words, this theorem asserts that [ ? x ] r  and [?x J t  “bound” the 

solutions to the query problem that can be inferred from the PST T.

When ?x is pure and positive (i.e. ?x has no negative occurrences in cp), 

then it may be shown that [?x!t =  A ® =  true\ and similarly for the case when 

?x is pure and negative we have [?JJr =  V ® =  false. These observations lead 

to the following corollary of the above theorem.

Corollary 7.2.2 Let T  be a potentially successful tableau for a PES con

structed from query formula ip and PS G.

1. I f ?x  is a placeholder in i>, then [?£]r is the strongest formula <p such 

that T  may be extended into a successful tableau when each positive oc

currence of ?x is replaced by <p.

2. I f  ?x is a placeholder in ip, then [ ? x l r  is the weakest formula <p such 

that T  may be extended into a successful tableau when each negative 

occurrence of ?x is replaced by <p.

For instance, the positive solution to the placeholder ?x  in section 7.1 is 

I?£J =  (p =  l A <7 =  0)V(p = 0 A <7 = 1), while the negative solution is [?^J =  

true. Therefore, any formula that is implied by (p = lA <7 =  0)V(p =  0 A<7 = 1) 

and implies true, e.g. p =  0 V p =  1, <7 < 5, or p > 0 etc., can be used to 

replace ?x in the query formula uY  =  (?x A (r]K), makes the model-checking 

problem successful.
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All the applications of the temporal-logic query checking established for 

prepositional systems [61], such as reachability analysis, discovering invari

ants, guard discovery, guided simulation and test case generation etc. can be 

formulated immediately as existential query-checking for Presburger systems. 

The full paper will consider this point more fully.

7.3 U niversal Q uery Checking

In general, a query problem may give rise to many PSTs, each yielding a 

boimd on the solution for each placeholder. Universal query checking provides 

multiple solutions by the means of all (potentially) successful tableaux.

Previous works [61] shows that solving a prepositional tempo-ral-logic 

query with a single placeholder takes 2 2” times slower than checking an equiv

alent model-checking property, where n is the number of atomic propositions 

in the system. Application of these algorithms to industrial systems turns out 

to be impractical, since a moderate system might contain dozens of boolean 

variables, not mention of even a single unbounded integer variable in the sys

tem.

In our setting, universal query checking has to find all potentially success

ful tableaux, while existential query checking only needs to locate one (po

tentially) successful tableau; Consequently, existential query checking has the 

same time complexity as local model checking, while universal query check

ing might take longer (since tableaux must be enumerated). Therefore, the 

existential query checking has significant advantages in practice.

Note that for queries involving in an invariant or bounded liveness property, 

in which a single greatest fixpoint requires computing, universal query checking 

may have the same time complexity as the existential one, because there are 

only a very small number of potentially successful tableaux in most cases. For
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example, the query AG?* in Section 7.1 only leads to one PST.

7.4 Im plem entation

To evaluate the performance of our query-checking technique, we have built a 

prototype called CWB-QC (Concurrency Workbench-Query Checking). The 

algorithm uses a depth-first search technique with caching. The proof rules 

in Figure 15 are used to generate sequents needed to be proved next in order 

for the goal sequent to be true. The cache management are similar to the 

real-time cases.

Symbolic Representations Symbolic representations enable model-based 

analysis for large state spaces. They are one of the key elements to improve 

the performance. There are two basic approaches to symbolic representation 

of linear arithmetic constraints in verification.

1. Polyhedra representation This approach encodes linear arithmetic 

formulas in a disjunctive normal form where each disjunct corresponds 

to a convex polyhedra. Each disjunct corresponds to a conjunction of 

linear constraints [49, 63]. The Omega Library [8 6 ], which we have used 

as a decision procedure for the parametric real-time model checking, is 

specially timed to solve integer problems in polyhedra representation. It 

also implements an extension of the Fourier-Motzkin linear programming 

algorithm [46].

2. Autom ata-based representation Automata-based representation of 

Presburger formulas dates back to at least Biichi [70]. Recent devel

opments have proposed more efficient encodings [17, 27, 28, 35j. An 

arithmetic constraint <£ over n integer variables can be encoded by a n- 

track deterministic finite-state automaton A#. The language recognized
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by A#  corresponds to the set of all solutions to <f>. Since each integer can 

be represented by the binary format in 2 ’s complement, a solution to <f> 

can represented as a vector of a n binary strings, with each binary string, 

or a tack, representing an integer for the corresponding variable. The 

i — th  column of the solution vector is the i — th  least significant bits of all 

variables. In what follows, we give a brief introduction [35]. We rewrite 

the formula ^ i< i< n a<xi ~  c as aTx  ~  c, where ~ e  { < , < , = , > , > } ,  

aT = {ai , . . . ,o„},  and

X =

\ Xn J

The automaton A# =  (S, s0, Saccept, {0,1 }", 6), where S - - Z U s0 is the 

set of states, the initial state so ^  Z; 5 ^ ^  is the set of accepting states, 

defined as Saccept =  {I € Z  11 ~  c}, united with {s0} if (—aTb ~  c) holds; 

{0, l}n is the input alphabet. 6 is the transition function S x  {0,1}" —► 5, 

defined as follows,

£(s0, b) = —aT ■ b 

6(1, b) = 21 + aT ■ b

where I € Z.

Let ||aT||_ =  and ||oT||+ =  E^xja,, theoretically, once the au

tomaton reaches a state outside of

[ | | a T H -  ,  l | a T | | + ]

it is guaranteed to stay outside of this range and on the same side of it. 

So all the states outside of the range can be collapsed into two states — oo 

and +oo. As an example, Figure 7.4 shows an automaton for x — y < 0.
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-00

+ 00

Figure 17: Automaton for x — y < 0

Both symbolic representations provides intersection, union, complement, 

existential quantifier elimination, and inclusion, emptiness, equivalence test
ing. Therefore they can be used in verification.
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The implication-checking procedure we employ is the MONA tool [71], 

which provides an automata-based decision procedure for WSlS (weak 

monadic second order logic with one successor) and takes BDDs to represent 

the internal transitions . These features also make the MONA tool widely 

used by other verification tools [17].

Note that all the experimental data in this chapter was collected on an 

Intel Pentium III 700MHZ CPU and 512MB memory laptop, running Linux 

2.4.

7.5 Case Study : A  Sim ple T herm ostat

As an example, we analyze the requirements of a simple thermostat; this 

example is adapted from the previous specification in [14]. The target system 

is responsible for keeping the room’s temperature in a moderate range between 

low and high if Switch is on. The SCR specification [62] of the system is given 

in Figure 18.

An SCR requirements specification models the system in an event-driven 

fashion. The input interface of the system is given as a set of monitored 

variables and the output interface as a set of controlled variables. For example, 

the thermostat reads the sensor of the room temperature and the status of the 

switch; and it controls variables for the power switches of the heat and air 

conditioner. The state space is partitioned into sets of states called modes. 

The system changes its state due to conditioned events. For example, the 

event @T(SwitchIsOn) represents condition “switch is tinned On from Off at 

next state” and @T(TooCold) describes the condition “temp < low becomes 

true at next state” , while condition SwitchlsOn says “switch is On” at the 

current state.

Note that in the specification given in Figure 18, values of the constants
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Constants:
Monitored Variables:

Mode Class:
Initial Conditions:

TooCold
TempOK
TooHot

low, high : Integer; 
temp : Integer;
Switch : {On,Off}
Thermostat : {Off,Inactive,Heat,AC} 
Switch=Off;
Thermostat=Off; 
low < high; 
temp < low
temp > low & temp < high 
temp > high

Old Mode SwitchlsOn Event New Mode
Off @T TooCold Heat

@T @T(TooCold)
@T TempOK Inactive
@T @T(TempOK)
@T TooHot AC
@T ©T(TooHot)

Inactive @F - Off
t OT(TooCold) Heat
t @T(TooHot) AC

Heat @F - Off
t @T(TempOK) Inactive

AC @F - Off
t @T(TempOK) Inactive

Figure 18: SCR specification of a simple thermostat

low, high are unspecified. These constants can take any integer value as long 

as they satisfy the ordering low < high. Our representation of the system also 

leaves these constants as unspecified.

M odeling th e  th e rm o sta t as a  PS  We model the Thermostat as a sym

bolic transition system T  =  (S,R,Si ,  InitC), where 5  =  5/ =  {s}, InitC =  

(Switch =  Off & Thermostat =  Off), and the set of transition R  is defined as
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what follows.
( s, Thermostat = Off L Switch = Off &; temp < low, Switch' = On & 

Thermostat'= Heat, r, s ) ;

( s, Thermostat = Off &: Switch = Off & temp > low, Switch' = On & temp < 

low & Thermostat' = Heat, r, s ) ;

{ s, Thermostat = AC & Switch = On &; (temp > high | temp < low), low < 

temp' < high & Thermostat' = Inactive, r, s ) ;

Q uery form ulas Invariants summarize relationships between data variables 

in the model and are often useful to add confidence to system designers. For 

example, we can use the following queries to find interesting invariants in each 

mode.

(a). AG (Thermostat=Off —►Tjq^Switch})

(b). AG (Thermostat=Inactive :{Switch,temp,low,high})

(c). AG (Thermostat=Heat : {Switch,temp,low})

(d). AG (Thermostat=AC —>?x4:{Switch,temp,high})

To check the status of the thermostat under different conditions, one can use 

the queries

AG (Thermostat=Heat) —► EX?xs : {Thermostat}

AG (Switch=On & temp<low) : {Thermostat}

The query AG(?*7 : {Switch} —► Thermostat=Heat) can return the status of 

the switch when the Thermostat is heating, and AG?x8 :{Thermostat} can 

return all reachable modes in the system.
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Performance results One can check each of the above query formulas sep

arately, i.e. rim CWB-QC multiple times, or query the conjunction of all the 

above formulas, i.e. run CWB-QC only once. We first take the former way 

and perform the existential query checking with CWB-QC. Each rim takes 

about 0.01 seconds and a maximal memory of 3 megabytes. For the latter 

way, CWB-QC takes a total of 0.02 seconds and a maximal memory of 4 

megabytes. Here are the output formulas to query predicates:

I?xJ t Switch =  Off

Switch =  On & low < temp < high

IVcAt Switch =  On & temp < low

IPxJ t Switch = On & temp > high

IPxJ t Thermostat=Inactive | Off

IPxJ t Thermostat=Heat

V x M Switch=On

IDxJ t Thermostat=Off | Inactive | Heat | AC
Note that the system we check is unbounded since low, high remain un

specified. One cannot query such a system with a finite-state query checking 

algorithm like the one [61], without using some abstraction techniques.

7.6 Perform ance C om parisons

Due to the absence of publicly available implementations of the query-checking 

tools, we compare the performance of our query checker with our model 

checker, and with the Action Language Verifier (ALV) [17] (version 0.3) for 

Presburger systems.

Comparison with model checking The performance data are collected in 

Table 9. Besides the thermostat, we also check the cruise control system [14] for 

several invariant properties. Note that the performance of our model checker
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and existential query checker are virtually identical.

Table 9: Query checking performance comparison with model checking. 
The letters in the names of the systems refer to the indexes of properties; s : 
CPU time in seconds; k : maximum kilobytes of memory used by the verifier.

Example CWB-QC 
query check

CWB-QC 
model check

thermostat-a 0.01s/3236k 0.01s/2812k
thermostat-b 0.01s/3316k 0.01s/2812k
thermostat-c 0.01s/3348k 0.01s/2808k
thermostat-d 0.01s/3304k 0.01s/2812k
cruise-a 0.02s/2932k 0.02s/2700k
cruise-b 0.02s/2528k 0.01s/2528k
cruise-c 0.01s/4088k 0.01s/3240k
cruise-d 0.02s/3940k 0.01s/3264k
cruise-e 0.01s/3508k 0.01s/3248k
cruise-f 0.02s/3084k 0.02s/2836k

C om parison w ith  ALV ALV is a symbolic model checker for Presburger 

systems that which uses the Composite Symbolic Library (CSL) [108] as its 

symbolic manipulation engine. CSL combines different symbolic representa

tions, which include the automata representation from the MONA package 

adopted by CWB-QC. To be fair for the performance comparison, we run 

ALV with the option “-F -I B” for forward and “-A -I B” for backward anal

ysis respectively, and only automata representations axe used.

Besides the above thermostat (all invariants are checked together), we have 

also verified the mutual exclusion properties for both bakery and ticket proto

cols, and an invariant property for the sleeping barber problem. The specifi

cations for these systems are the same as [17]. The query formula we check for 

these examples is AG?* and with projection over some data variables. Table 10 

contains the performance data.
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These figures in Table 9 and Table 10 show that the query checking runs as 

fast as the model checking of CWB-QC, and the latter is more efficient than 

ALV. This fact together with the running time from the previous subsection 

indicates that our proof-based symbolic query checking technique can provide 

very efficient service to the design of Presburger systems in practice.

Fast E rro r-D etection  of C W B -Q C  The (potentially) successful tableau 

constructed by CWB-QC provides a witness showing why the solution satisfies 

the query. On the other hand, a counter-example is reported when a formula 

is violated by the model. As an on-the-fly model checker, CWB-QC can detect 

errors quickly. We show this by checking buggy formulas for the above case 

studies.

The buggy formula we checked for the Thermostat is

AG(Thermostat=AC —> temp < high).

The property we verified for both ticket and bakery protocol is whether it 

is allowed for a second process in the try mode while one is already in the 

critical section. The barber algorithm is checked with the negation of an 

invariant constraint. The performance data is reported in Table 11. CWB- 

QC generally outperforms ALV on these case studies. We conjecture that the 

superior performance in this case is due to the forward proof-based analysis of 

our technique.
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Table 10: Query checking performance comparison with ALV-0.3.
The numbers in the names of the systems refer to the numbers of processes in the models, s : CPU time in 
seconds; k : maximum kilobytes of memory used by the verifier; N/A : “UNABLE TO VERIFY” reported by 
the model checker (in this case we still report the time and memory consumption); O/M: computation does not 
terminate within one hour.

Example CWB-QC 
query check

CWB-QC 
model check

ALV-0.3
forward

ALV-0.3
backward

thermostat 0.02s/3804k 0.02s/2468k 0.11s/16288k 0.10/16192k
ticket-2 0.02s/3076k 0.01s/2468k 0.08s/15288k N/A(0.14s/15520k)
ticket-3 0.16s/3864k 0.11s/3368k 0.30s/15896k N /  A(0.64s/16364k)
ticket-4 1.22s/5224k 1.04s/4760k 2.98s/19300k N/A(5.26s/26492k)
ticket-5 14.21s/12056k 14.00s/l1468k 20.83s/33552k N/A (30.24s/61584k)
bakery-2 0.01s/2832k 0.01s/2656k 0.11s/15576k 0.04s/15228k
bakery-3 0.51s/5496k 0.49s/3476k 14.40s/28368k N/A(0.79s/17604k)
barber-10 0.11s/4972k 0.10s/4688k 0.15s/16636k 0.16s/16952k
barber-12 0.12s/5500k 0.12s/4972k 0.17s/16924k 0.18s/17136k
barber-14 0.15s/5896k 0.15s/5376k 0.19s/17156k 0.19s/17560k
barber-16 0.18s/6496k 0.17s/5376k 0.21s/17360k 0.21s/17748k
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Table 11: Query checking performance comparison with ALV-0.3 for buggy properties.
The numbers in the names of the systems refer to the numbers of processes in the models, s : CPU time in 
seconds; k : maximum kilobytes of memory used by the verifier; O/M: computation does not terminate within 
one hour.

Example CWB-QC 
model check

ALV-0.3
forward

ALV-0.3
backward

thermostat 0.00s/2784k 0.03s/15516k 0.02/16220k
ticket-2 0.01s/2848k 0.13s/15340k 0.06s/15360k
ticket-3 0.02s/2968k 2.64s/17644k 0.19s/16036k
ticket-4 0.03s/3432k 48.90s/45732k 1.45s/20796k
ticket-5 0.06s/4880k 820.84s/316988k 9.47s/37956k
bakery-2 0.00s/2468k 0.16s/15624k 0.07s/15116k
bakery-3 0.01s/2740k 13.79s/28504k 0.51s/17464k
barber-10 0.01s/2472k O/M 0.17s/17024k
barber-12 0.01s/2704k O/M 0.18s/17396k
barber-14 0.01s/3184k O/M 0.21s/17410k
barber-16 0.01s/3272k O/M 0.24s/17576k
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Chapter 8

Conclusion and Future Work

In this dissertation, we have developed a generic model-checking framework 

for data-based systems. Existing model checking problems can be encoded via 

predicate equation systems. We have investigated how global model checking 

and local model checking techniques could be developed based on PESs. Espe

cially, a Gentzen-like proof system is proposed for the local model checking via 

PESs. Two important applications of the local model checking technique have 

been studied for the domains of real-time systems and Presburger systems.

R eal-tim e m odel checking We have presented an on-the-fly algorithm for 

solving the traditional real-time and universal parametric real-time model- 

checking problems based on PESs. Experimental results demonstrate that 

our proof-theoretic method is significantly superior to existing approaches for 

systems contain errors, while exhibiting competitive behavior for systems that 

are correct. This fast error-detection capability of our technique makes it 

especially interesting for industrial design in which model checkers are used 

“early and often” to detect design errors in an ongoing manner.
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T em poral Logic Q uery Checking We have also proposed a framework 

for solving temporal-logic query checking for Presburger systems based on the 

local model-checking technique. Existential query checking returns only one 

solution to the query predicate by locating one potentially successful tableau, 

while universal query checking returns multiple solutions from all such poten

tially successful tableaux. Our query checking works with multiple placehold

ers and placeholders with both positive and negative occurrences. Performance 

comparisons show that our query-checking technique is very efficient and our 

model-checking runs as fast as the existing state-of-the-art model checker ALV 

for Presburger systems.

The efficient query checking and model checking together with the fast- 

error-detection capability make CWB-QC interesting for the understanding of 

system designs.

D irections for F u tu re  R esearch Apparently, there are direct extensions 

of the parametric model checking to Presburger systems and the temporal logic 

query checking to real-time systems. These extensions are the benefits of the 

generic model-checking framework. Techniques developed in one application 

domain can be shared by another. With these tools in hand, the next step 

would be some industry-level case studies. We are planning to apply them to 

the projects from aerospace and automotive industries.

Our parametric algorithm terminates for parameter constraints taking the 

form of finite sets on allowed values. We would investigate whether it also 

terminates with a more general constraint over parameters (e.g. an infinite set 

of parameter settings) in the future. To study the constraint synthesis problem 

with our forward /  backward approach would also be very interesting.

PESs provides a generic model checking framework. Seeking new tech

niques to solve the PESs, providing optimizations to existing algorithms would 

be a long-run task.
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In addition, advanced data structures play key roles in efficient symbolic 

model checking for data-based systems. To invent and experiment new data- 

structures would always be exciting. Particularly, we are planning to use 

BDD-like data structures for our next version of the real-time model checking.

To find new applications based on PESs would also be promising. For 

example, the relationship between vacuity checking [18, 73] and query check

ing has been studied by [93]. The idea is to use query checking to solve a 

weaker (parameterized) version of vacuity. Typically, if M  \= ip and there 

is a stronger/weaker (depending on the polarity of the subformula in ques

tion) formula <f> which could be used to substitute the subformula ip in ip, and 

M  |= ip[(p <— <f>], we can say that <p is relatively vacuous with respect to <f> in 

this model checking problem. And the existence of a stronger/weaker formula 

can be detected by query checking. Therefore, our query-checking technique 

can help to detect vacuity for the design of data-based systems.

Data mining is the practice of automatically searching large stores of data 

for patterns. In recent years, attempts have been made to bridge model check

ing and data mining. For example, the XML path language can be encoded 

into CTL formalism [56]. Since temporal logic can also be thought as pattern 

language, it would be fruitful to systematically investigate how techniques 

developed in the area of model-checking could be used for data mining.
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first-order boolean equation sys

tems, 2
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first-order modal mu-calculus, 29 

fixpoint, 10

fixpoint approximation, 11, 21 

fixpoint equation systems, 12 

parity block, 12 

semantics, 12 

syntax, 12 

Floyd-Warshall algorithm, 57, 60 

Fourier-Motzkin algorithm, 92 

free variables, 12, 16, 18

Gentzen-like proof system, 23, 49, 

83

Horn clause, 3 

HRD, 61 

HyTech, 72

internal action, 29

Kronos, 65

linear terms, 41, 78 

local model checking, 3 

logic programming, 3 

LPMC, 72 

LTL, 1

MES, 29, 31, 43, 81 

modal equation systems, 29 

formula variables, 29, 43, 81 

formula-closed, 29

semantics, 29, 30 

syntax, 29 

modal mu-calculus, 1, 29, 33 

MONA, 95

Omega Library, 60, 92

parameter valuation, 41 

parameterized boolean equation 

systems, 39 

parametric real-time model check

ing, 4, 40 

parity indicator, 12, 19 

partial order, 10 

PDBM, 56 

PES, 2, 19, 20 

placeholder, 7, 86 

polyhedra, 92 

positive normal form, 31 

predicate equation systems, 19 

basic data theory, 16 

predicate block, 20 

predicate calculus, 18 

predicate equation block, 19 

predicate state, 18 

predicate variables, 18 

predicate-closed, 18 

Presburger formulas, 79 

Presburger modal mu-calculus 

semantics, 81
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syntax, 81 

projection operator, 87 

PST, 88, 91

real-time modal mu-calculus 

semantics, 43 

syntax, 43 

RED, 65, 72

SCR, 95 

sequent, 23 

skolemization, 26 

state predicates, 41 

state-transformation formula, 17, 

30

strongest postcondition, 18, 48 

substitution operation, 16, 18 

successful leaf, 23 

symbolic action, 32

TCTL, 44

temporal-logic query checking, 7, 86 

existential query checking, 88 

universal query checking, 91 

time predecessor, 48 

time successor, 48 

transition systems

concrete transition systems, 28 

CTS, 29, 33, 42, 43, 81 

event-action language, 32

Linear Process Equations, 32 

parametric timed automata, 41 

Presburger systems, 7, 79 

PS, 79, 86 

STG, 32, 33 

STGA, 32

symbolic transition graphs, 28, 

32

timed automata, 32 

value-passing CCS, 32 

translation function, 35, 46, 82 

TReX, 72

universal parametric real-time 

model-checking, 5 

UPPAAL, 65

vacuity checking, 105

weakest precondition, 30, 48 

WS1S, 95

XML, 105
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